forked from hkaggarwal/modl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
supportingFunctions.py
272 lines (237 loc) · 8.76 KB
/
supportingFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
Created on Aug 6th, 2018
This file contains some supporting functions used during training and testing.
@author:Hemant
"""
import time
import numpy as np
import h5py as h5
#%%
def div0( a, b ):
""" This function handles division by zero """
c=np.divide(a, b, out=np.zeros_like(a), where=b!=0)
return c
#%% This provide functionality similar to matlab's tic() and toc()
def TicTocGenerator():
# Generator that returns time differences
ti = 0 # initial time
tf = time.time() # final time
while True:
ti = tf
tf = time.time()
yield tf-ti # returns the time difference
TicToc = TicTocGenerator() # create an instance of the TicTocGen generator
# This will be the main function through which we define both tic() and toc()
def toc(tempBool=True):
# Prints the time difference yielded by generator instance TicToc
tempTimeInterval = next(TicToc)
if tempBool:
print( "Elapsed time: %f seconds.\n" %tempTimeInterval )
def tic():
# Records a time in TicToc, marks the beginning of a time interval
toc(False)
#%%
def normalize01(img):
"""
Normalize the image between o and 1
"""
if len(img.shape)==3:
nimg=len(img)
else:
nimg=1
r,c=img.shape
img=np.reshape(img,(nimg,r,c))
img2=np.empty(img.shape,dtype=img.dtype)
for i in range(nimg):
img2[i]=div0(img[i]-img[i].min(),img[i].ptp())
#img2[i]=(img[i]-img[i].min())/(img[i].max()-img[i].min())
return np.squeeze(img2).astype(img.dtype)
#%%
def np_crop(data, shape=(320,320)):
w_from = (data.shape[-2] - shape[0]) // 2
h_from = (data.shape[-1] - shape[1]) // 2
w_to = w_from + shape[0]
h_to = h_from + shape[1]
return data[..., w_from:w_to, h_from:h_to]
#%%
def myPSNR(org,recon):
""" This function calculates PSNR between the original and
the reconstructed images"""
mse=np.sum(np.square( np.abs(org-recon)))/org.size
psnr=20*np.log10(org.max()/(np.sqrt(mse)+1e-10 ))
return psnr
#%% Here I am reading the dataset for training and testing from dataset.hdf5 file
def getData(trnTst='testing',num=100,sigma=.01):
#num: set this value between 0 to 163. There are total testing 164 slices in testing data
print('Reading the data. Please wait...')
filename='dataset.hdf5' #set the correct path here
#filename='/Users/haggarwal/datasets/piData/dataset.hdf5'
tic()
with h5.File(filename) as f:
if trnTst=='training':
org,csm,mask=f['trnOrg'][:],f['trnCsm'][:],f['trnMask'][:]
else:
org,csm,mask=f['tstOrg'][num],f['tstCsm'][num],f['tstMask'][num]
na=np.newaxis
org,csm,mask=org[na],csm[na],mask[na]
toc()
print('Successfully read the data from file!')
print('Now doing undersampling....')
tic()
atb=generateUndersampled(org,csm,mask,sigma)
toc()
print('Successfully undersampled data!')
if trnTst=='testing':
atb=c2r(atb)
return org,atb,csm,mask
#Here I am reading one single image from demoImage.hdf5 for testing demo code
def getTestingData():
print('Reading the data. Please wait...')
filename='demoImage.hdf5' #set the correct path here
tic()
with h5.File(filename,'r') as f:
org,csm,mask=f['tstOrg'][:],f['tstCsm'][:],f['tstMask'][:]
toc()
print('Successfully read the data from file!')
print('Now doing undersampling....')
tic()
atb=generateUndersampled(org,csm,mask,sigma=.01)
atb=c2r(atb)
toc()
print('Successfully undersampled data!')
return org,atb,csm,mask
#%%
def piA(x,csm,mask,nrow,ncol,ncoil):
""" This is a the A operator as defined in the paper"""
ccImg=np.reshape(x,(nrow,ncol) )
coilImages=np.tile(ccImg,[ncoil,1,1])*csm;
kspace=np.fft.fft2(coilImages)/np.sqrt(nrow * ncol)
if len(mask.shape)==2:
mask=np.tile(mask,(ncoil,1,1))
res=kspace[mask!=0]
return res
def piAt(kspaceUnder,csm,mask,nrow,ncol,ncoil):
""" This is a the A^T operator as defined in the paper"""
temp=np.zeros((ncoil,nrow,ncol),dtype=np.complex64)
if len(mask.shape)==2:
mask=np.tile(mask,(ncoil,1,1))
temp[mask!=0]=kspaceUnder
img=np.fft.ifft2(temp)*np.sqrt(nrow*ncol)
coilComb=np.sum(img*np.conj(csm),axis=0).astype(np.complex64)
#coilComb=coilComb.ravel();
return coilComb
def generateUndersampled(org,csm,mask,sigma=0.):
nSlice,ncoil,nrow,ncol=csm.shape
atb=np.empty(org.shape,dtype=np.complex64)
for i in range(nSlice):
A = lambda z: piA(z,csm[i],mask[i],nrow,ncol,ncoil)
At = lambda z: piAt(z,csm[i],mask[i],nrow,ncol,ncoil)
sidx=np.where(mask[i].ravel()!=0)[0]
nSIDX=len(sidx)
noise=np.random.randn(nSIDX*ncoil,)+1j*np.random.randn(nSIDX*ncoil,)
noise=noise*(sigma/np.sqrt(2.))
y=A(org[i]) + noise
atb[i]=At(y)
return atb
#%%
def r2c(inp):
""" input img: row x col x 2 in float32
output image: row x col in complex64
"""
if inp.dtype=='float32':
dtype=np.complex64
else:
dtype=np.complex128
out=np.zeros( inp.shape[0:2],dtype=dtype)
out=inp[...,0]+1j*inp[...,1]
return out
def c2r(inp):
""" input img: row x col in complex64
output image: row x col x2 in float32
"""
if inp.dtype=='complex64':
dtype=np.float32
else:
dtype=np.float64
out=np.zeros( inp.shape+(2,),dtype=dtype)
out[...,0]=inp.real
out[...,1]=inp.imag
return out
#%%
def getWeights(wtsDir,chkPointNum='last'):
"""
Input:
wtsDir: Full path of directory containing modelTst.meta
nLay: no. of convolution+BN+ReLu blocks in the model
output:
wt: numpy dictionary containing the weights. The keys names ae full
names of corersponding tensors in the model.
"""
tf.reset_default_graph()
if chkPointNum=='last':
loadChkPoint=tf.train.latest_checkpoint(wtsDir)
else:
loadChkPoint=wtsDir+'/model'+chkPointNum
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as s1:
saver = tf.train.import_meta_graph(wtsDir + '/modelTst.meta')
saver.restore(s1, loadChkPoint)
keys=[n.name+':0' for n in tf.get_default_graph().as_graph_def().node if "Variable" in n.op]
var=tf.global_variables()
wt={}
for key in keys:
va=[v for v in var if v.name==key][0]
wt[key]=s1.run(va)
tf.reset_default_graph()
return wt
def assignWts(sess1,nLay,wts):
"""
Input:
sess1: it is the current session in which to restore weights
nLay: no. of convolution+BN+ReLu blocks in the model
wts: numpy dictionary containing the weights
"""
var=tf.global_variables()
#check lam and beta; these for for alternate strategy scalars
#check lamda 1
tfV=[v for v in var if 'lam1' in v.name and 'Adam' not in v.name]
npV=[v for v in wts.keys() if 'lam1' in v]
if len(tfV)!=0 and len(npV)!=0:
sess1.run(tfV[0].assign(wts[npV[0]] ))
#check lamda 2
tfV=[v for v in var if 'lam2' in v.name and 'Adam' not in v.name]
npV=[v for v in wts.keys() if 'lam2' in v]
if len(tfV)!=0 and len(npV)!=0: #in single channel there is no lam2 so length is zero
sess1.run(tfV[0].assign(wts[npV[0]] ))
# assign W,b,beta gamma ,mean,variance
#for each layer at a time
for i in np.arange(1,nLay+1):
tfV=[v for v in var if 'conv'+str(i) +str('/') in v.name \
or 'Layer'+str(i)+str('/') in v.name and 'Adam' not in v.name]
npV=[v for v in wts.keys() if ('Layer'+str(i))+str('/') in v or'conv'+str(i)+str('/') in v]
tfv2=[v for v in tfV if 'W:0' in v.name]
npv2=[v for v in npV if 'W:0' in v]
if len(tfv2)!=0 and len(npv2)!=0:
sess1.run(tfv2[0].assign(wts[npv2[0]]))
tfv2=[v for v in tfV if 'b:0' in v.name]
npv2=[v for v in npV if 'b:0' in v]
if len(tfv2)!=0 and len(npv2)!=0:
sess1.run(tfv2[0].assign(wts[npv2[0]]))
tfv2=[v for v in tfV if 'beta:0' in v.name]
npv2=[v for v in npV if 'beta:0' in v]
if len(tfv2)!=0 and len(npv2)!=0:
sess1.run(tfv2[0].assign(wts[npv2[0]]))
tfv2=[v for v in tfV if 'gamma:0' in v.name]
npv2=[v for v in npV if 'gamma:0' in v]
if len(tfv2)!=0 and len(npv2)!=0:
sess1.run(tfv2[0].assign(wts[npv2[0]]))
tfv2=[v for v in tfV if 'moving_mean:0' in v.name]
npv2=[v for v in npV if 'moving_mean:0' in v]
if len(tfv2)!=0 and len(npv2)!=0:
sess1.run(tfv2[0].assign(wts[npv2[0]]))
tfv2=[v for v in tfV if 'moving_variance:0' in v.name]
npv2=[v for v in npV if 'moving_variance:0' in v]
if len(tfv2)!=0 and len(npv2)!=0:
sess1.run(tfv2[0].assign(wts[npv2[0]]))
return sess1