-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #157 from wilhelm-lab/release/0.6.4
Release/0.6.4
- Loading branch information
Showing
20 changed files
with
6,964 additions
and
4,492 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,5 +15,5 @@ full_name: Mario Picciani | |
email: [email protected] | ||
project_name: spectrum_io | ||
project_short_description: IO related functionalities for oktoberfest. | ||
version: 0.6.3 | ||
version: 0.6.4 | ||
license: MIT |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -29,7 +29,7 @@ jobs: | |
poetry build --ansi | ||
- name: Publish package on PyPI | ||
uses: pypa/[email protected].1 | ||
uses: pypa/[email protected].3 | ||
with: | ||
# TODO COOKIETEMPLE: Configure your PyPI Token to enable automatic deployment to PyPi on releases | ||
# https://help.github.com/en/actions/configuring-and-managing-workflows/creating-and-storing-encrypted-secrets | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
from __future__ import annotations | ||
|
||
import glob | ||
import logging | ||
import os | ||
import re | ||
from pathlib import Path | ||
from typing import Dict, Optional, Union | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import spectrum_fundamentals.constants as c | ||
from spectrum_fundamentals.mod_string import xisearch_to_internal | ||
|
||
from .search_results import SearchResults | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class Scout(SearchResults): | ||
"""Handle search results from xisearch.""" | ||
|
||
def read_result( | ||
self, | ||
tmt_label: str = "", | ||
custom_mods: dict[str, int] | None = None, | ||
ptm_unimod_id: int | None = 0, | ||
ptm_sites: list[str] | None = None, | ||
) -> pd.DataFrame: | ||
""" | ||
Function to read a csv of CSMs and perform some basic formatting. | ||
:param tmt_label: tmt label as str | ||
:param custom_mods: dict with custom variable and static identifier and respecitve internal equivalent and mass | ||
:param ptm_unimod_id: unimod id used for site localization | ||
:param ptm_sites: possible sites that the ptm can exist on | ||
:raises NotImplementedError: if TMT label is provided | ||
:return: pd.DataFrame with the formatted data | ||
""" | ||
if tmt_label != "": | ||
raise NotImplementedError("TMT is not supported for Scout") | ||
|
||
logger.info("Reading search results file...") | ||
columns_to_read = [ | ||
"ScanNumber", | ||
"Charge", | ||
"ExperimentalMZ", | ||
"AlphaPeptide", | ||
"BetaPeptide", | ||
"AlphaPos", | ||
"BetaPos", | ||
"AlphaMappings", | ||
"BetaMappings", | ||
"ClassificationScore", | ||
"Peptide Position 1", | ||
"Peptide Position 2", | ||
"Protein 1", | ||
"Protein 2", | ||
"FileName", | ||
] | ||
|
||
self.results = pd.read_csv(self.path, usecols=columns_to_read) | ||
logger.info("Finished reading search results file.") | ||
# Standardize column names | ||
self.convert_to_internal(mods={}) | ||
return self.filter_valid_prosit_sequences() | ||
# df = Scout._filter_duplicates(df) | ||
|
||
@staticmethod | ||
def _filter_duplicates(df: pd.DataFrame) -> pd.DataFrame: | ||
""" | ||
Keep csm with higher score and remove duplicate (only top ranks). | ||
:param df: df to filter | ||
:return: filtered df as pd.DataFrame | ||
""" | ||
repetitive_combinations = df[df.duplicated(subset=["ScanNumber", "RAW_FILE"], keep=False)] | ||
filtered_df = repetitive_combinations.groupby(["ScanNumber", "RAW_FILE"]).apply( | ||
lambda x: x.loc[x["ClassificationScore"].idxmax()] | ||
) | ||
filtered_df.reset_index(drop=True, inplace=True) | ||
final_df = pd.concat([df.drop_duplicates(subset=["ScanNumber", "RAW_FILE"], keep=False), filtered_df]) | ||
final_df.reset_index(drop=True, inplace=True) | ||
df = final_df | ||
return df | ||
|
||
@staticmethod | ||
def _extract_modifications(peptide_seq: str): | ||
modifications = [] | ||
# Find all matches of modifications | ||
matches = re.findall(r"([CM])\(\+([\d.]+)\)", peptide_seq) | ||
for match in matches: | ||
mod, _ = match | ||
# Add modification to the list | ||
if mod == "C": | ||
modifications.append("cm") | ||
elif mod == "M": | ||
modifications.append("ox") | ||
return ";".join(modifications) | ||
|
||
@staticmethod | ||
def _extract_modification_positions(peptide_seq: str): | ||
pattern = r"([A-Z])(\(\+\d+\.\d+\))?" | ||
matches = re.findall(pattern, peptide_seq) | ||
split_peptide = [] | ||
for match in matches: | ||
amino_acid = match[0] | ||
modification = match[1] if match[1] else "" | ||
split_peptide.append(amino_acid + modification) | ||
positions = [str(i + 1) for i, component in enumerate(split_peptide) if "+" in component] | ||
return ";".join(positions) | ||
|
||
@staticmethod | ||
def _self_or_between_mp(df: pd.DataFrame) -> pd.DataFrame: | ||
df["tmp_id"] = df.index | ||
df_expl = df.copy() | ||
df_expl.loc[:, "AlphaMappings"] = df_expl["AlphaMappings"].str.split(";") | ||
df_expl.loc[:, "BetaMappings"] = df_expl["BetaMappings"].str.split(";") | ||
df_expl = df_expl.explode("AlphaMappings") | ||
df_expl = df_expl.explode("BetaMappings") | ||
df_expl.loc[:, "self"] = False | ||
df_expl.loc[df_expl["AlphaMappings"] == df_expl["BetaMappings"], "self"] = True | ||
id_to_self = df_expl.groupby("tmp_id", dropna=False).agg({"self": "max"}).reset_index() | ||
df = df.drop(["self"], axis=1, errors="ignore").merge(id_to_self, on=["tmp_id"], validate="1:1") | ||
df.loc[:, "fdr_group"] = df["self"].apply(lambda x: "self" if x else "between") | ||
return df | ||
|
||
def convert_to_internal( | ||
self, mods: dict[str, str], ptm_unimod_id: int | None = None, ptm_sites: list[str] | None = None | ||
): | ||
""" | ||
Convert all columns in the search engine-specific output to the internal format used by Oktoberfest. | ||
:param mods: dictionary mapping search engine-specific mod patterns (keys) to ProForma standard (values) | ||
:param ptm_unimod_id: unimod id used for site localization | ||
:param ptm_sites: possible sites that the ptm can exist on | ||
""" | ||
# Filter csms that does not contain any "k" | ||
df = self.results | ||
df = df[(df["AlphaPeptide"].str.contains("K")) & (df["BetaPeptide"].str.contains("K"))] | ||
df["decoy_p1"] = df["AlphaMappings"].str.contains("Reverse").astype(bool) | ||
df["decoy_p2"] = df["BetaMappings"].str.contains("Reverse").astype(bool) | ||
df["protein_p1"] = df["AlphaMappings"] | ||
df["protein_p2"] = df["BetaMappings"] | ||
df["decoy"] = df["decoy_p1"] | df["decoy_p2"] | ||
df["REVERSE"] = df["decoy"] | ||
df["RAW_FILE"] = df["FileName"].apply(lambda x: x.split("\\")[-1]) | ||
df["MASS"] = df["ExperimentalMZ"] | ||
df["PRECURSOR_CHARGE"] = df["Charge"] | ||
df["CROSSLINKER_TYPE"] = "DSSO" | ||
df["crosslinker_name"] = "DSSO" | ||
df["linked_aa_p1"] = "K" | ||
df["linked_aa_p2"] = "K" | ||
df["linear"] = "False" | ||
df["match_score"] = "ClassificationScore" | ||
df["SCORE"] = df["ClassificationScore"] | ||
df["SCAN_NUMBER"] = df["ScanNumber"] | ||
df["SEQUENCE_A"] = df["AlphaPeptide"].apply(lambda x: re.sub(r"\([^)]*\)", "", x)) | ||
df["SEQUENCE_B"] = df["BetaPeptide"].apply(lambda x: re.sub(r"\([^)]*\)", "", x)) | ||
df["base_sequence_p1"] = df["SEQUENCE_A"] | ||
df["base_sequence_p2"] = df["SEQUENCE_B"] | ||
df = df[df.apply(lambda row: row["SEQUENCE_A"][row["AlphaPos"]] == "K", axis=1)] | ||
df = df[df.apply(lambda row: row["SEQUENCE_B"][row["BetaPos"]] == "K", axis=1)] | ||
df["Modifications_A"] = df["AlphaPeptide"].apply(Scout._extract_modifications) | ||
df["Modifications_B"] = df["BetaPeptide"].apply(Scout._extract_modifications) | ||
df["mods_p1"] = df["AlphaPeptide"].apply(Scout._extract_modifications) | ||
df["mods_p2"] = df["BetaPeptide"].apply(Scout._extract_modifications) | ||
df["ModificationPositions1"] = df["AlphaPeptide"].apply(Scout._extract_modification_positions) | ||
df["ModificationPositions2"] = df["BetaPeptide"].apply(Scout._extract_modification_positions) | ||
df["CROSSLINKER_POSITION_A"] = df["AlphaPos"] + 1 | ||
df["CROSSLINKER_POSITION_B"] = df["BetaPos"] + 1 | ||
df["mod_pos_p1"] = df["AlphaPos"] + 1 | ||
df["mod_pos_p2"] = df["BetaPos"] + 1 | ||
df["link_pos_p1"] = df["AlphaPos"] + 1 | ||
df["link_pos_p2"] = df["BetaPos"] + 1 | ||
df["PEPTIDE_LENGTH_A"] = df["SEQUENCE_A"].apply(len) | ||
df["PEPTIDE_LENGTH_B"] = df["SEQUENCE_B"].apply(len) | ||
df["aa_len_p1"] = df["SEQUENCE_A"].apply(len) | ||
df["aa_len_p2"] = df["SEQUENCE_B"].apply(len) | ||
df = Scout._self_or_between_mp(df) | ||
df["fdr_group"] = np.where( | ||
df["AlphaMappings"].str.replace("Reverse_", "") == df["BetaMappings"].str.replace("Reverse_", ""), | ||
"self", | ||
"between", | ||
) | ||
df.drop(columns=["self"], inplace=True) | ||
df.drop(columns=["tmp_id"], inplace=True) | ||
logger.info("Converting Scout peptide sequence to internal format...") | ||
df["RAW_FILE"] = df["RAW_FILE"].str.replace(".raw", "") | ||
df["MODIFIED_SEQUENCE_A"] = df.apply( | ||
lambda row: xisearch_to_internal( | ||
xl=row["CROSSLINKER_TYPE"], | ||
seq=row["SEQUENCE_A"], | ||
mod=row["Modifications_A"], | ||
crosslinker_position=row["CROSSLINKER_POSITION_A"], | ||
mod_positions=row["ModificationPositions1"], | ||
), | ||
axis=1, | ||
result_type="expand", | ||
) | ||
df["MODIFIED_SEQUENCE_B"] = df.apply( | ||
lambda row: xisearch_to_internal( | ||
xl=row["CROSSLINKER_TYPE"], | ||
seq=row["SEQUENCE_B"], | ||
mod=row["Modifications_B"], | ||
crosslinker_position=row["CROSSLINKER_POSITION_B"], | ||
mod_positions=row["ModificationPositions2"], | ||
), | ||
axis=1, | ||
result_type="expand", | ||
) | ||
new_column_names = { | ||
"FileName": "run_name", | ||
"ScanNumber": "scan_number", | ||
"ExperimentalMZ": "precursor_mass", | ||
"Charge": "precursor_charge", | ||
"scan_number": "ScanNumber", | ||
} | ||
self.results = df.rename(columns=new_column_names) | ||
|
||
def filter_valid_prosit_sequences(self) -> pd.DataFrame: | ||
""" | ||
Filter valid Prosit sequences. | ||
:return: df after filtration | ||
""" | ||
logger.info(f"#sequences before filtering for valid prosit sequences: {len(self.results)}") | ||
self.results = self.results[(self.results["PEPTIDE_LENGTH_A"] <= 30)] | ||
self.results = self.results[self.results["PEPTIDE_LENGTH_A"] >= 6] | ||
self.results = self.results[(self.results["PEPTIDE_LENGTH_B"] <= 30)] | ||
self.results = self.results[self.results["PEPTIDE_LENGTH_B"] >= 6] | ||
self.results = self.results[(~self.results["SEQUENCE_A"].str.contains(r"B|\*|\.|U|O|X|Z|\(|\)"))] | ||
self.results = self.results[(~self.results["SEQUENCE_B"].str.contains(r"B|\*|\.|U|O|X|Z|\(|\)"))] | ||
self.results = self.results[self.results["PRECURSOR_CHARGE"] <= 6] | ||
logger.info(f"#sequences after filtering for valid prosit sequences: {len(self.results)}") | ||
|
||
return self.results |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.