Skip to content

Figures & code from the paper "Shortcut Learning in Deep Neural Networks" (arXiv 2020)

Notifications You must be signed in to change notification settings

wichmann-lab/shortcut-perspective

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 

Repository files navigation

Figures & code from "Shortcut Learning in Deep Neural Networks"

This repository contains code to reproduce the results from our toy example reported in the perspective article "Shortcut Learning in Deep Neural Networks" by Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge & Felix A. Wichmann.

Toy example:

When trained on a simple dataset of stars and moons (top row), a standard neural network (three layers, fully-connected) can easily categorise novel similar exemplars (middle row) but testing it on a slightly different dataset (bottom row) reveals a shortcut classification strategy: The network has learned to associate object location with a label. During training, stars were always shown in the top right or bottom left of an image; moons in the top left or bottom right, thus the neural network used location instead of shape for categorisation. This pattern is still present in samples from the i.i.d. test set (middle row) but no longer present in o.o.d. test images (bottom row). Neural networks often rely on such unintended strategies to solve problems.

About

Figures & code from the paper "Shortcut Learning in Deep Neural Networks" (arXiv 2020)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%