Skip to content

whai362/pan_pp.pytorch

Repository files navigation

News

  • (2022/12/08) We will release the code and models of FAST in link.
  • (2022/10/09) We release stabler code for PAN++, see pan_pp_stable.
  • (2022/04/22) Update PAN++ ICDAR 2015 joint training & post-processing with vocabulary & visualization code.
  • (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23.
  • (2021/04/08) PSENet and PAN are included in MMOCR.

Introduction

This repository contains the official implementations of PSENet, PAN, PAN++.

Text Detection
Text Spotting

Installation

First, clone the repository locally:

git clone https://github.com/whai362/pan_pp.pytorch.git

Then, install PyTorch 1.1.0+, torchvision 0.3.0+, and other requirements:

conda install pytorch torchvision -c pytorch
pip install -r requirement.txt

Finally, compile codes of post-processing:

# build pse and pa algorithms
sh ./compile.sh

Dataset

Please refer to dataset/README.md for dataset preparation.

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py config/pan/pan_r18_ic15.py

Testing

Evaluate the performance

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}
cd eval/
./eval_{DATASET}.sh

For example:

python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar
cd eval/
./eval_ic15.sh

Evaluate the speed

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

For example:

python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar --report_speed

Visualization

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --vis

For example:

python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar --vis

Citation

Please cite the related works in your publications if it helps your research:

PSENet

@inproceedings{wang2019shape,
  title={Shape Robust Text Detection with Progressive Scale Expansion Network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}

PAN

@inproceedings{wang2019efficient,
  title={Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network},
  author={Wang, Wenhai and Xie, Enze and Song, Xiaoge and Zang, Yuhang and Wang, Wenjia and Lu, Tong and Yu, Gang and Shen, Chunhua},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8440--8449},
  year={2019}
}

PAN++

@article{wang2021pan++,
  title={PAN++: Towards Efficient and Accurate End-to-End Spotting of Arbitrarily-Shaped Text},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Liu, Xuebo and Liang, Ding and Zhibo, Yang and Lu, Tong and Shen, Chunhua},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

FAST

@misc{chen2021fast,
  title={FAST: Searching for a Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation}, 
  author={Zhe Chen and Wenhai Wang and Enze Xie and ZhiBo Yang and Tong Lu and Ping Luo},
  year={2021},
  eprint={2111.02394},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

This project is developed and maintained by IMAGINE Lab@National Key Laboratory for Novel Software Technology, Nanjing University.

IMAGINE Lab

This project is released under the Apache 2.0 license.