Paper: https://arxiv.org/abs/1612.04337
Code is written in Torch and requires CUDA and cuDNN.
(3x3 Patches) Content - w/ Starry Night - w/ Small Worlds I with AvgPooling - using Inverse Network - using Inverse Network (w/ Composition X) Original - 5x5 Patch - 9x9 Patch - 15x15 Patch (w/ La Muse) Original - 3x3 Patch - 5x5 Patch - 9x9 Patchgit clone https://github.com/rtqichen/style-swap
cd style-swap/models
sh download_models.sh
cd ..
Stylizing a single image:
th style-swap.lua --content images/content/bike.jpg --style images/style/starry_night.jpg
More options:
th style-swap.lua --help
eg. increase --patchSize
for more abstract stylization
th style-swap.lua --content images/content/brad_pitt.jpg --style images/style/la_muse.jpg --patchSize 7 --patchStride 3
eg. use --contentBatch
to stylize all images in a directory.
th style-swap.lua --contentBatch images/content --style images/style/starry_night.jpg
th train-vgg-decoder.lua --contentDir /path/to/dir --styleDir /path/to/dir
More options:
th train-vgg-decoder.lua --help
For training the network in our paper, we used images from MS COCO and the Painter by Numbers competition hosted by Kaggle.
Frame-by-frame stylization can be done using the -contentBatch
option.
An example script using ffmpeg
to extract frames, stylize, and re-encode a video.
mkdir video_frames
ffmpeg -i /path/to/video -qscale:v 2 video_frames/video_%04d.jpg
th style-swap --contentBatch video_frames --style /path/to/style/file --save stylized_frames
ffmpeg -i stylized_frames/video_%04d_stylized.jpg -c:v libx264 -pix_fmt yuv420p stylized_video.mp4
Examples of stylized videos are placed in the videos folder. (Original video by TimeLapseHD.)