forked from LiberAI/NSpM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_vocab.py
executable file
·78 lines (58 loc) · 2.06 KB
/
build_vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
"""
Neural SPARQL Machines - Build the vocabulary.
'SPARQL as a Foreign Language' by Tommaso Soru and Edgard Marx et al., SEMANTiCS 2017
https://arxiv.org/abs/1708.07624
Version 1.0.0
Usage: python build_vocab.py data.en > vocab.en
"""
import numpy as np
from tensorflow.contrib import learn
import sys
import importlib
import io
importlib.reload(sys)
x_text = list()
with io.open(sys.argv[1], encoding="utf-8") as f:
for line in f:
x_text.append(str(line[:-1]))
vocabulary = set()
lang = sys.argv[1].split('.')[-1].lower()
# print lang
if lang == "sparql":
for x in x_text:
for t in x.split(" "):
vocabulary.add(t)
else: # any other language
# x_text = ['This is a cat','This must be boy', 'This is a a dog']
max_document_length = max([len(x.split(" ")) for x in x_text])
# Create the vocabularyprocessor object, setting the max lengh of the documents.
vocab_processor = learn.preprocessing.VocabularyProcessor(
max_document_length)
# Transform the documents using the vocabulary.
x = np.array(list(vocab_processor.fit_transform(x_text)))
# Extract word:id mapping from the object.
vocab_dict = vocab_processor.vocabulary_._mapping
# Sort the vocabulary dictionary on the basis of values(id).
# Both statements perform same task.
#sorted_vocab = sorted(vocab_dict.items(), key=operator.itemgetter(1))
sorted_vocab = sorted(list(vocab_dict.items()), key=lambda x: x[1])
# Treat the id's as index into list and create a list of words in the ascending order of id's
# word with id i goes at index i of the list.
vocabulary = set(list(zip(*sorted_vocab))[0])
# split also by apostrophe
to_remove = set()
to_add = set()
for t0 in vocabulary:
if "'" in t0:
to_remove.add(t0)
for t1 in t0.split("'"):
to_add.add(t1)
for t0 in to_remove:
vocabulary.remove(t0)
for t0 in to_add:
vocabulary.add(t0)
# print terms
for v in vocabulary:
if v != "":
print(v.encode("utf-8"))