Skip to content

Commit

Permalink
DeepForest support for multiple annotation types (point, box, polygon…
Browse files Browse the repository at this point in the history
…). (#590)

Add support for multiple annotation types (point, box, polygon)

---------

Co-authored-by: henry senyondo <[email protected]>
  • Loading branch information
bw4sz and henrykironde authored Jul 29, 2024
1 parent 290062c commit 81b029f
Show file tree
Hide file tree
Showing 40 changed files with 1,831 additions and 758 deletions.
1 change: 1 addition & 0 deletions HISTORY.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ DeepForest Change Log

**1.3.5**

Add Support for multiple annotation types (point, box, polygon).
Create a utilities.download_ArcGIS_REST function to download tiles from ArcGIS REST API. For example to download NAIP imagery.

**1.3.3**
Expand Down
2 changes: 1 addition & 1 deletion deepforest/IoU.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,6 @@ def compute_IoU(ground_truth, submission):
}))

iou_df = pd.concat(iou_df)
iou_df = iou_df.merge(ground_truth[["truth_id", "xmin", "xmax", "ymin", "ymax"]])
iou_df = iou_df.merge(ground_truth[["truth_id", "geometry"]])

return iou_df
1 change: 1 addition & 0 deletions deepforest/data/australia.cpg
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
ISO-8859-1
Binary file added deepforest/data/australia.dbf
Binary file not shown.
1 change: 1 addition & 0 deletions deepforest/data/australia.prj
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
PROJCS["WGS_1984_UTM_Zone_53S",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",10000000.0],PARAMETER["Central_Meridian",135.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]
Binary file added deepforest/data/australia.shp
Binary file not shown.
Binary file added deepforest/data/australia.shx
Binary file not shown.
Binary file added deepforest/data/australia.tif
Binary file not shown.
89 changes: 50 additions & 39 deletions deepforest/evaluate.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,19 +5,21 @@
import numpy as np
import cv2
from PIL import Image
import warnings

from deepforest import IoU
from deepforest.utilities import check_file
from deepforest import visualize
import warnings
from deepforest.utilities import determine_geometry_type


def evaluate_image(predictions, ground_df, root_dir, savedir=None):
def evaluate_image_boxes(predictions, ground_df, root_dir, savedir=None):
"""Compute intersection-over-union matching among prediction and ground
truth boxes for one image.
Args:
df: a pandas dataframe with columns name, xmin, xmax, ymin, ymax, label. The 'name' column should be the path relative to the location of the file.
df: a geopandas dataframe with geometry columns
predictions: a geopandas dataframe with geometry columns
ground_df: a geopandas dataframe with geometry columns
summarize: Whether to group statistics by plot and overall score
image_coordinates: Whether the current boxes are in coordinate system of the image, e.g. origin (0,0) upper left.
root_dir: Where to search for image names in df
Expand All @@ -32,14 +34,6 @@ def evaluate_image(predictions, ground_df, root_dir, savedir=None):
else:
plot_name = plot_names[0]

predictions['geometry'] = predictions.apply(
lambda x: shapely.geometry.box(x.xmin, x.ymin, x.xmax, x.ymax), axis=1)
predictions = gpd.GeoDataFrame(predictions, geometry='geometry')

ground_df['geometry'] = ground_df.apply(
lambda x: shapely.geometry.box(x.xmin, x.ymin, x.xmax, x.ymax), axis=1)
ground_df = gpd.GeoDataFrame(ground_df, geometry='geometry')

# match
result = IoU.compute_IoU(ground_df, predictions)

Expand Down Expand Up @@ -101,25 +95,45 @@ def __evaluate_wrapper__(predictions,
iou_threshold,
numeric_to_label_dict,
savedir=None):
"""Evaluate a set of predictions against a ground truth csv file.
Args:
predictions: a pandas dataframe, if supplied a root dir is needed to give the relative path of files in df.name. The labels in ground truth and predictions must match. If one is numeric, the other must be numeric.
csv_file: a csv file with columns xmin, ymin, xmax, ymax, label, image_path
root_dir: location of files in the dataframe 'name' column.
iou_threshold: intersection-over-union threshold, see deepforest.evaluate
savedir: optional directory to save image with overlaid predictions and annotations
Returns:
results: a dictionary of results with keys, results, box_recall, box_precision, class_recall
"""
"""Evaluate a set of predictions against a ground truth csv file
Args:
predictions: a pandas dataframe, if supplied a root dir is needed to give the relative path of files in df.name. The labels in ground truth and predictions must match. If one is numeric, the other must be numeric.
root_dir: location of files in the dataframe 'name' column.
iou_threshold: intersection-over-union threshold, see deepforest.evaluate
savedir: optional directory to save image with overlaid predictions and annotations
Returns:
results: a dictionary of results with keys, results, box_recall, box_precision, class_recall
"""
# remove empty samples from ground truth
ground_df = ground_df[~((ground_df.xmin == 0) & (ground_df.xmax == 0))]

results = evaluate(predictions=predictions,
ground_df=ground_df,
root_dir=root_dir,
iou_threshold=iou_threshold,
savedir=savedir)
# Default results for blank predictions
if predictions.empty:
results = {
"results": None,
"box_recall": 0,
"box_precision": np.nan,
"class_recall": None
}
return results

# Convert pandas to geopandas if needed
if not isinstance(predictions, gpd.GeoDataFrame):
warnings.warn("Converting predictions to GeoDataFrame using geometry column")
predictions = gpd.GeoDataFrame(predictions, geometry="geometry")

prediction_geometry = determine_geometry_type(predictions)
if prediction_geometry == "point":
raise NotImplementedError("Point evaluation is not yet implemented")
elif prediction_geometry == "box":
results = evaluate_boxes(predictions=predictions,
ground_df=ground_df,
root_dir=root_dir,
iou_threshold=iou_threshold,
savedir=savedir)
else:
raise NotImplementedError(
"Geometry type {} not implemented".format(prediction_geometry))

# replace classes if not NUll
if not results is None:
Expand All @@ -135,7 +149,7 @@ def __evaluate_wrapper__(predictions,
return results


def evaluate(predictions, ground_df, root_dir, iou_threshold=0.4, savedir=None):
def evaluate_boxes(predictions, ground_df, root_dir, iou_threshold=0.4, savedir=None):
"""Image annotated crown evaluation routine submission can be submitted as
a .shp, existing pandas dataframe or .csv path.
Expand All @@ -151,10 +165,6 @@ def evaluate(predictions, ground_df, root_dir, iou_threshold=0.4, savedir=None):
box_precision: proportion of predictions that are true positive, regardless of class
class_recall: a pandas dataframe of class level recall and precision with class sizes
"""

check_file(ground_df)
check_file(predictions)

# Run evaluation on all plots
results = []
box_recalls = []
Expand All @@ -181,10 +191,10 @@ def evaluate(predictions, ground_df, root_dir, iou_threshold=0.4, savedir=None):
continue
else:
group = group.reset_index(drop=True)
result = evaluate_image(predictions=image_predictions,
ground_df=group,
root_dir=root_dir,
savedir=savedir)
result = evaluate_image_boxes(predictions=image_predictions,
ground_df=group,
root_dir=root_dir,
savedir=savedir)

result["image_path"] = image_path
result["match"] = result.IoU > iou_threshold
Expand Down Expand Up @@ -254,7 +264,9 @@ def _point_recall_image_(predictions, ground_df, root_dir=None, savedir=None):
raise AttributeError("savedir is {}, but root dir is None".format(savedir))
image = np.array(Image.open("{}/{}".format(root_dir, plot_name)))[:, :, ::-1]
image = visualize.plot_predictions(image, df=predictions)
image = visualize.plot_points(image, df=ground_df, color=(0, 165, 255))
image = visualize.plot_points(image,
points=ground_df[["x", "y"]].values,
color=(0, 165, 255))
cv2.imwrite("{}/{}".format(savedir, plot_name), image)

return result
Expand All @@ -276,7 +288,6 @@ def point_recall(predictions, ground_df, root_dir=None, savedir=None):
box_recall: proportion of true positives between predicted boxes and ground truth points, regardless of class
class_recall: a pandas dataframe of class level recall and precision with class sizes
"""
check_file(predictions)
if savedir:
if root_dir is None:
raise AttributeError("savedir is {}, but root dir is None".format(savedir))
Expand Down
75 changes: 50 additions & 25 deletions deepforest/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import typing
import warnings

import cv2
import geopandas as gpd
import numpy as np
import pandas as pd
import pytorch_lightning as pl
Expand Down Expand Up @@ -406,7 +406,7 @@ def predict_file(self, csv_file, root_dir, savedir=None, color=None, thickness=1
Returns:
df: pandas dataframe with bounding boxes, label and scores for each image in the csv file
"""
df = pd.read_csv(csv_file)
df = utilities.read_file(csv_file)
ds = dataset.TreeDataset(csv_file=csv_file,
root_dir=root_dir,
transforms=None,
Expand Down Expand Up @@ -595,7 +595,10 @@ def validation_step(self, batch, batch_idx):
self.log("val_{}".format(key), value, on_epoch=True)

for index, result in enumerate(preds):
boxes = visualize.format_boxes(result)
# Skip empty predictions
if result["boxes"].shape[0] == 0:
continue
boxes = visualize.format_geometry(result)
boxes["image_path"] = path[index]
self.predictions.append(boxes)

Expand All @@ -616,30 +619,52 @@ def on_validation_epoch_end(self):
self.log_dict(output)
self.mAP_metric.reset()

# Evaluate on validation data predictions
self.predictions_df = pd.concat(self.predictions)
ground_df = pd.read_csv(self.config["validation"]["csv_file"])
ground_df["label"] = ground_df.label.apply(lambda x: self.label_dict[x])
if len(self.predictions) == 0:
return None
else:
self.predictions_df = pd.concat(self.predictions)

#Evaluate every n epochs
if self.current_epoch % self.config["validation"]["val_accuracy_interval"] == 0:
results = evaluate_iou.__evaluate_wrapper__(
predictions=self.predictions_df,
ground_df=ground_df,
root_dir=self.config["validation"]["root_dir"],
iou_threshold=self.config["validation"]["iou_threshold"],
savedir=None,
numeric_to_label_dict=self.numeric_to_label_dict)

self.log("box_recall", results["box_recall"])
self.log("box_precision", results["box_precision"])
if isinstance(results, pd.DataFrame):
for index, row in results["class_recall"].iterrows():
self.log("{}_Recall".format(self.numeric_to_label_dict[row["label"]]),
row["recall"])
self.log(
"{}_Precision".format(self.numeric_to_label_dict[row["label"]]),
row["precision"])
#Create a geospatial column
ground_df = utilities.read_file(self.config["validation"]["csv_file"])
ground_df["label"] = ground_df.label.apply(lambda x: self.label_dict[x])

if self.predictions_df.empty:
warnings.warn("No predictions made, skipping evaluation")
geom_type = utilities.determine_geometry_type(ground_df)
if geom_type == "box":
result = {
"box_recall": 0,
"box_precision": 0,
"class_recall": pd.DataFrame()
}
else:
results = evaluate_iou.__evaluate_wrapper__(
predictions=self.predictions_df,
ground_df=ground_df,
root_dir=self.config["validation"]["root_dir"],
iou_threshold=self.config["validation"]["iou_threshold"],
savedir=None,
numeric_to_label_dict=self.numeric_to_label_dict)

# Log each key value pair of the results dict
for key, value in results.items():
if key in ["class_recall"]:
for index, row in value.iterrows():
self.log(
"{}_Recall".format(
self.numeric_to_label_dict[row["label"]]),
row["recall"])
self.log(
"{}_Precision".format(
self.numeric_to_label_dict[row["label"]]),
row["precision"])
else:
try:
self.log(key, value)
except:
pass

def predict_step(self, batch, batch_idx):
batch_results = self.model(batch)
Expand Down Expand Up @@ -719,7 +744,7 @@ def evaluate(self, csv_file, root_dir, iou_threshold=None, savedir=None):
Returns:
results: dict of ("results", "precision", "recall") for a given threshold
"""
ground_df = pd.read_csv(csv_file)
ground_df = utilities.read_file(csv_file)
ground_df["label"] = ground_df.label.apply(lambda x: self.label_dict[x])
predictions = self.predict_file(csv_file=csv_file,
root_dir=root_dir,
Expand Down
9 changes: 6 additions & 3 deletions deepforest/predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,13 @@
import pandas as pd
import numpy as np
import os
from PIL import Image
import warnings

import torch
from torchvision.ops import nms
import typing

from deepforest import visualize, dataset
import rasterio
from deepforest.utilities import read_file


def _predict_image_(model,
Expand Down Expand Up @@ -182,6 +180,11 @@ def _dataloader_wrapper_(model,
results.append(prediction)

results = pd.concat(results, ignore_index=True)
if results.empty:
results["geometry"] = None
return results

results = read_file(results, root_dir)

if savedir:
visualize.plot_prediction_dataframe(results,
Expand Down
Loading

0 comments on commit 81b029f

Please sign in to comment.