Skip to content

Commit

Permalink
Try add depth cov loss to improve quality (#142)
Browse files Browse the repository at this point in the history
  • Loading branch information
wanmeihuali authored Oct 10, 2023
1 parent 9c2a7d5 commit 2cea5de
Show file tree
Hide file tree
Showing 6 changed files with 124 additions and 45 deletions.
1 change: 1 addition & 0 deletions Dockerfile.aws
Original file line number Diff line number Diff line change
Expand Up @@ -5,5 +5,6 @@ RUN pip install --upgrade pip && \
pip install --no-cache-dir -U taichi==1.6.0 matplotlib numpy pytorch_msssim dataclass-wizard pillow pyyaml pandas[parquet]==2.0.0 scipy argparse tensorboard
COPY . /opt/ml/code
WORKDIR /opt/ml/code
RUN pip install -i https://pypi.taichi.graphics/simple/ taichi-nightly
RUN pip install -r requirements.txt
RUN pip install -e .
3 changes: 1 addition & 2 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
taichi>=1.6.0
matplotlib
numpy
pytorch_msssim
Expand All @@ -8,4 +7,4 @@ pyyaml
pandas[parquet]>=2.0.0
scipy
argparse
tensorboard
tensorboard
76 changes: 41 additions & 35 deletions scratch/playground.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,9 @@
# %%
from scipy.stats import multivariate_normal
import open3d as o3d
from sympy import symbols, Matrix, diff, exp
import matplotlib.pyplot as plt
import pandas as pd
from Camera import CameraInfo
from utils import get_ray_origin_and_direction_from_camera, get_ray_origin_and_direction_from_camera_by_gpt
from utils import torch_single_point_alpha_forward
Expand Down Expand Up @@ -88,7 +93,7 @@
homogeneous_translation_camera[1, 0], homogeneous_translation_camera[2, 0]])

D_translation_camrea_D_q = translation_camera.jacobian(q)
D_translation_camrea_D_t = translation_camera.jacobian(translation)
D_translation_camrea_D_t = translation_camera.jacobian(t)
print(latex(D_translation_camrea_D_q))
pprint(D_translation_camrea_D_q, use_unicode=True)
print(latex(D_translation_camrea_D_t))
Expand Down Expand Up @@ -303,7 +308,6 @@ def rotation_matrix_from_quaternion(q: ti.math.vec4) -> ti.math.mat3:
print(sympy.python(J))

# %%
import sympy
xy = sympy.MatrixSymbol('xy', 2, 1)
mu = sympy.Matrix(["mu_x", "mu_y"])
cov = sympy.MatrixSymbol('cov', 2, 2)
Expand All @@ -325,7 +329,6 @@ def rotation_matrix_from_quaternion(q: ti.math.vec4) -> ti.math.mat3:
print(J.shape)
print(sympy.python(J))
# %%
import numpy as np
xy = np.array([1, 2])
x = xy[0]
y = xy[1]
Expand Down Expand Up @@ -377,7 +380,6 @@ def gradient_cov(x, mean, cov):
print(gradient_mean(xy, mu, cov))
print(gradient_cov(xy, mu, cov))
# %%
import torch
xy = torch.tensor([1., 2.])
mu = torch.tensor([3., 1.], requires_grad=True)
cov = torch.tensor([[0.8, 0.1], [0.1, 0.8]], requires_grad=True)
Expand Down Expand Up @@ -585,14 +587,11 @@ def quaternion_to_rotation_matrix_torch(q):
T_pointcloud_camera=T_pointcloud_camera)

# %%
import pandas as pd
import numpy as np
path = "logs/sigmoid_on_image_fix_bug/scene_66000.parquet"
df = pd.read_parquet(path)
# %%
df.head()
# %%
import matplotlib.pyplot as plt
plt.hist(np.exp(df.cov_s0), bins=100)
# %%
np.exp(df.cov_s0).argmax()
Expand All @@ -608,11 +607,11 @@ def quaternion_to_rotation_matrix_torch(q):
print(col, df[col].isnull().sum())

# %%
df = df.dropna()
df = df.dropna()

# %%
import numpy as np
from sympy import symbols, Matrix, diff, exp


def compute_derivatives(mu, Sigma, x):
# 定义符号变量
mu1, mu2, x1, x2 = symbols('mu1 mu2 x1 x2')
Expand All @@ -637,13 +636,14 @@ def compute_derivatives(mu, Sigma, x):
"""

# 用实际值替换符号变量
subs = {mu1: mu[0], mu2: mu[1], x1: x[0], x2: x[1],
subs = {mu1: mu[0], mu2: mu[1], x1: x[0], x2: x[1],
s11: Sigma[0, 0], s12: Sigma[0, 1], s21: Sigma[1, 0], s22: Sigma[1, 1]}
dp_dmu_val = dp_dmu.subs(subs)
dp_dSigma_val = dp_dSigma.subs(subs)

return dp_dmu_val, dp_dSigma_val


# 测试函数
mu = np.array([1, 2])
Sigma = np.array([[100., 0], [0, 100]])
Expand All @@ -653,7 +653,7 @@ def compute_derivatives(mu, Sigma, x):
print("dp/dmu:", dp_dmu)
print("dp/dSigma:", dp_dSigma)
# %%
import torch


def compute_derivatives_torch(mu, Sigma, x):
# 将输入转换为PyTorch张量,并设置requires_grad=True以启用自动微分
Expand All @@ -671,6 +671,7 @@ def compute_derivatives_torch(mu, Sigma, x):

return mu_torch.grad, Sigma_torch.grad


def my_compute(mu, Sigma, x):
gaussian_mean = mu
xy = x
Expand All @@ -680,7 +681,7 @@ def my_compute(mu, Sigma, x):
det_cov = Sigma[0, 0] * Sigma[1, 1] - Sigma[0, 1] * Sigma[1, 0]
inv_cov = (1. / det_cov) * \
np.array([[gaussian_covariance[1, 1], -gaussian_covariance[0, 1]],
[-gaussian_covariance[1, 0], gaussian_covariance[0, 0]]])
[-gaussian_covariance[1, 0], gaussian_covariance[0, 0]]])
cov_inv_xy_mean = inv_cov @ xy_mean
xy_mean_T_cov_inv_xy_mean = xy_mean @ cov_inv_xy_mean
exponent = -0.5 * xy_mean_T_cov_inv_xy_mean
Expand All @@ -689,9 +690,10 @@ def my_compute(mu, Sigma, x):
xy_mean_outer_xy_mean = np.array([[xy_mean[0] * xy_mean[0], xy_mean[0] * xy_mean[1]],
[xy_mean[1] * xy_mean[0], xy_mean[1] * xy_mean[1]]])
d_p_d_cov = 0.5 * p * (inv_cov @
xy_mean_outer_xy_mean @ inv_cov)
xy_mean_outer_xy_mean @ inv_cov)
return d_p_d_mean, d_p_d_cov


# 测试函数
mu = np.array([1.0, 2.0])
Sigma = np.array([[1.0, 0.0], [0.0, 1.0]])
Expand All @@ -711,7 +713,8 @@ def my_compute(mu, Sigma, x):
tmp = np.random.rand(2, 2)
Sigma = tmp @ tmp.T
dp_dmu, dp_dSigma = compute_derivatives(mu, Sigma, x)
dp_dmu, dp_dSigma = np.array(dp_dmu, dtype=np.float32), np.array(dp_dSigma, dtype=np.float32)
dp_dmu, dp_dSigma = np.array(dp_dmu, dtype=np.float32), np.array(
dp_dSigma, dtype=np.float32)
dp_dmu = dp_dmu.reshape(-1)
dp_dSigma = dp_dSigma.reshape(2, 2)
dp_dmu_torch, dp_dSigma_torch = compute_derivatives_torch(mu, Sigma, x)
Expand All @@ -723,25 +726,24 @@ def my_compute(mu, Sigma, x):
print("dp/dSigma:", dp_dSigma)
print("dp/dSigma (my):", dp_dSigma_my)
print("dp/dSigma (torch):", dp_dSigma_torch)

# assert np.allclose(dp_dmu, dp_dmu_torch.detach().numpy(), rtol=1e-3), f"dp_dmu: {dp_dmu}, dp_dmu_torch: {dp_dmu_torch}"
# assert np.allclose(dp_dSigma, dp_dSigma_torch.detach().numpy(), rtol=1e-3), f"dp_dSigma: {dp_dSigma}, dp_dSigma_torch: {dp_dSigma_torch}"
assert np.allclose(dp_dmu, dp_dmu_my, rtol=1e-3), f"dp_dmu: {dp_dmu}, dp_dmu_my: {dp_dmu_my}"
assert np.allclose(dp_dSigma, dp_dSigma_my, rtol=1e-3), f"dp_dSigma: {dp_dSigma}, dp_dSigma_my: {dp_dSigma_my}"


assert np.allclose(dp_dmu, dp_dmu_my,
rtol=1e-3), f"dp_dmu: {dp_dmu}, dp_dmu_my: {dp_dmu_my}"
assert np.allclose(dp_dSigma, dp_dSigma_my,
rtol=1e-3), f"dp_dSigma: {dp_dSigma}, dp_dSigma_my: {dp_dSigma_my}"


# %%
import pandas as pd
import numpy as np
import open3d as o3d
parquet_path = "/home/kuangyuan/hdd/Development/taichi_3d_gaussian_splatting/logs/tat_truck_experiment_more_val/scene_13750.parquet"
df = pd.read_parquet(parquet_path)
# %%
df.head()
# %%
point_cloud = df[["x", "y", "z"]].values
point_cloud_rgb = df[["r_sh0", "g_sh0", "b_sh0"]].values
# here rgb are actually sh coefficients (-inf, inf),
# here rgb are actually sh coefficients (-inf, inf),
# need to apply sigmoid to get (0, 1) rgb
point_cloud_rgb = 1.0 / (1.0 + np.exp(-point_cloud_rgb))
# %%
Expand Down Expand Up @@ -789,6 +791,7 @@ def rotation_matrix_from_quaternion(q: ti.math.vec4) -> ti.math.mat3:
])
"""


def rotation_matrix_from_quaternion(q: np.ndarray) -> np.ndarray:
xx = q[0] * q[0]
yy = q[1] * q[1]
Expand All @@ -805,6 +808,7 @@ def rotation_matrix_from_quaternion(q: np.ndarray) -> np.ndarray:
[2 * (xz - wy), 2 * (yz + wx), 1 - 2 * (xx + yy)]
])


S = np.exp(s)

rotated_S = np.zeros((len(q), 3))
Expand All @@ -814,8 +818,7 @@ def rotation_matrix_from_quaternion(q: np.ndarray) -> np.ndarray:
normal[i] = rotation_matrix_from_quaternion(q[i]) @ base_vector[i]
normal[i] *= np.linalg.norm(rotated_S[i])




# %%
point_cloud_o3d = o3d.geometry.PointCloud()
point_cloud_o3d.points = o3d.utility.Vector3dVector(point_cloud[mask])
Expand All @@ -824,8 +827,9 @@ def rotation_matrix_from_quaternion(q: np.ndarray) -> np.ndarray:
o3d.visualization.draw_geometries([point_cloud_o3d])
# %%

import taichi as ti
ti.init(arch=ti.cpu)


@ti.kernel
def test():
Cov = ti.Matrix([
Expand All @@ -835,11 +839,10 @@ def test():
eig, V = ti.sym_eig(Cov)
print(eig)
print(V)


test()
# %%
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal

# Define the mean and covariance matrix
mean = np.array([0, 0])
Expand Down Expand Up @@ -875,8 +878,10 @@ def test():
plt.imshow(mask, extent=(-50, 50, -50, 50), origin='lower')

# plt eigenvectors
plt.quiver(mean[0], mean[1], eigen_vectors[0, 0], eigen_vectors[1, 0], color='r', scale=10 / np.sqrt(eigen_values[0]))
plt.quiver(mean[0], mean[1], eigen_vectors[0, 1], eigen_vectors[1, 1], color='r', scale=10 / np.sqrt(eigen_values[1]))
plt.quiver(mean[0], mean[1], eigen_vectors[0, 0], eigen_vectors[1,
0], color='r', scale=10 / np.sqrt(eigen_values[0]))
plt.quiver(mean[0], mean[1], eigen_vectors[0, 1], eigen_vectors[1,
1], color='r', scale=10 / np.sqrt(eigen_values[1]))

plt.colorbar()
plt.show()
Expand All @@ -885,13 +890,14 @@ def test():
print(np.sqrt(eigen_values[1]) * 4)

# %%
import pandas as pd
"/home/kuangyuan/hdd/Development/other/taichi_3d_gaussian_splatting/logs/tat_truck_every_8_experiment/camera_poses_6000.parquet"
df = pd.read_parquet("/home/kuangyuan/hdd/Development/other/taichi_3d_gaussian_splatting/logs/tat_truck_every_8_with_pose_noise_optimization/camera_poses_10000.parquet")
df = pd.read_parquet(
"/home/kuangyuan/hdd/Development/other/taichi_3d_gaussian_splatting/logs/tat_truck_every_8_with_pose_noise_optimization/camera_poses_10000.parquet")
# %%
df.head()
# %%
df1 = pd.read_parquet("/home/kuangyuan/hdd/Development/other/taichi_3d_gaussian_splatting/logs/tat_truck_every_8_baseline/camera_poses_30000.parquet")
df1 = pd.read_parquet(
"/home/kuangyuan/hdd/Development/other/taichi_3d_gaussian_splatting/logs/tat_truck_every_8_baseline/camera_poses_30000.parquet")
# %%

df1.head()
Expand Down
9 changes: 8 additions & 1 deletion taichi_3d_gaussian_splatting/GaussianPoint3D.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,14 @@ def project_to_camera_position_by_q_t_jacobian(
d_uv_d_q = d_uv_d_translation_camera @ d_translation_camera_d_q
# d_uv_d_t = d_uv_d_translation_camera @ d_translation_camera_d_t
d_uv_d_t = d_uv_d_translation_camera
return d_uv_d_translation, d_uv_d_q, d_uv_d_t
d_depth_dq = ti.math.vec4([
d_translation_camera_d_q[2, 0],
d_translation_camera_d_q[2, 1],
d_translation_camera_d_q[2, 2],
d_translation_camera_d_q[2, 3]
])
d_depth_dt = ti.math.vec3([0, 0, 1])
return d_uv_d_translation, d_uv_d_q, d_uv_d_t, d_depth_dq, d_depth_dt

@ti.func
def project_to_camera_covariance(
Expand Down
Loading

0 comments on commit 2cea5de

Please sign in to comment.