Skip to content

vrajroutu/KnowledgeGraphs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Knowledge Graphs with Azure OpenAI

This repository provides a Jupyter Notebook that demonstrates how to use Neo4j and Azure OpenAI to build a property graph. By leveraging the SchemaLLMPathExtractor, we can construct a graph with predefined schemas, enabling precise control over entity types, relation types, and their connections.

Table of Contents

Introduction

In this notebook, we walk through using Neo4j and Azure OpenAI to build a property graph. Specifically, we use the SchemaLLMPathExtractor to define and extract entities and relations based on a specific schema, ensuring that the LLM predictions are constrained to our defined graph structure.

Requirements

To run this notebook, you will need the following:

  • Python 3.8 or higher
  • Jupyter Notebook
  • Docker
  • Libraries:
    • llama-index
    • llama-index-llms-ollama
    • llama-index-embeddings-huggingface
    • llama-index-graph-stores-neo4j
    • openai
    • llama-index-embeddings-azure-openai
    • llama-index-llms-azure-openai

Installation

Install the required libraries using pip:

pip install llama-index
pip install llama-index-llms-ollama
pip install llama-index-embeddings-huggingface
pip install llama-index-graph-stores-neo4j
pip install openai
pip install llama-index-embeddings-azure-openai
pip install llama-index-llms-azure-openai

Data Loading

To load data, create the necessary directory and download the sample data:

mkdir -p './azdev/paulgraham'
curl -o 'data/paul_graham/paul_graham_essay.txt' -O 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt'

Then, use the following code snippet to read the data:

from llama_index.core import SimpleDirectoryReader

documents = SimpleDirectoryReader("/azdev/paulgraham/").load_data()

Graph Construction

To construct the graph, use the SchemaLLMPathExtractor with a predefined schema:

import nest_asyncio
from typing import Literal
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.core.indices.property_graph import SchemaLLMPathExtractor

nest_asyncio.apply()

entities = Literal["PERSON", "PLACE", "ORGANIZATION"]
relations = Literal["HAS", "PART_OF", "WORKED_ON", "WORKED_WITH", "WORKED_AT"]

validation_schema = {
    "PERSON": ["HAS", "PART_OF", "WORKED_ON", "WORKED_WITH", "WORKED_AT"],
    "PLACE": ["HAS", "PART_OF", "WORKED_AT"],
    "ORGANIZATION": ["HAS", "PART_OF", "WORKED_WITH"],
}

kg_extractor = SchemaLLMPathExtractor(
    llm=AzureOpenAI(
        model="gpt-4",
        deployment_name="",
        api_key='',
        azure_endpoint="",
        api_version="2024-02-01",
    ),
    possible_entities=entities,
    possible_relations=relations,
    kg_validation_schema=validation_schema,
    strict=True
)

Neo4j Setup

To launch Neo4j locally, ensure Docker is installed and run the following command:

docker run \
    -p 7474:7474 -p 7687:7687 \
    -v $PWD/data:/data -v $PWD/plugins:/plugins \
    --name neo4j-apoc \
    -e NEO4J_apoc_export_file_enabled=true \
    -e NEO4J_apoc_import_file_enabled=true \
    -e NEO4J_apoc_import_file_use__neo4j__config=true \
    -e NEO4J_AUTH=neo4j/database4591 \
    -e NEO4JLABS_PLUGINS='["apoc"]' \
    neo4j:latest

Access the database at http://localhost:7474/. The default username/password is neo4j/neo4j.

Usage

Initialize the Neo4j graph store:

from llama_index.graph_stores.neo4j import Neo4jPGStore

graph_store = Neo4jPGStore(
    username="neo4j",
    password="",
    url="bolt://localhost:7687",
)

Set environment variables and initialize the Azure OpenAI client:

import os
import asyncio
from openai import AzureOpenAI
from llama_index.core import PropertyGraphIndex

os.environ["AZURE_OPENAI_API_KEY"] = ""
os.environ["AZURE_OPENAI_ENDPOINT"] = ""

client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),
    api_version="2024-02-01",
    azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
)

deployment_name = 'embedding'

def azure_openai_embedding(text):
    try:
        response = client.embeddings.create(
            model=deployment_name,
            input=text
        )
        return response['data'][0]['embedding']
    except Exception as e:
        print(f"Error getting embedding: {e}")
        return None

class AzureOpenAIEmbedding:
    def __init__(self, client):
        self.client = client

    def embed(self, text):
        return azure_openai_embedding(text)

    async def aget_text_embedding_batch(self, texts, **kwargs):
        try:
            loop = asyncio.get_event_loop()
            tasks = [loop.run_in_executor(None, azure_openai_embedding, text) for text in texts]
            responses = await asyncio.gather(*tasks)
            return [response for response in responses if response is not None]
        except Exception as e:
            print(f"Error getting batch embeddings: {e}")
            return None

embed_model = AzureOpenAIEmbedding(client)

try:
    index = PropertyGraphIndex.from_documents(
        documents,
        kg_extractors=[kg_extractor],
        embed_model=embed_model,
        property_graph_store=graph_store,
    )
except Exception as e:
    print(f"Error creating PropertyGraphIndex: {e}")

Contact

For any questions or feedback, please reach out via email: [email protected].


Feel free to contribute to this repository by submitting issues or pull requests. Your contributions are highly appreciated!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published