Skip to content
RKBK edited this page Mar 8, 2016 · 15 revisions

In this example we will cover how to use ase-espresso to calculate density of states.

The following script generates and saves the density of states.

#######################################################
## Tutorial by: Hongliang Xin
## Topic: Density of States in ase-espresso
##
## dependencies: ase, espresso, pickle
##
## Generates the data files necessary to analyze
## the density of states for a Pd(111) slab
#######################################################

#!/usr/bin/env python 

from ase import io, Atom, Atoms
from ase.constraints import FixAtoms
from ase.optimize import QuasiNewton
from ase.lattice.surface import *
from ase.visualize import view
from ase.lattice.general_surface import surface

from espresso import espresso

import os

# Surface
a0 = 3.99663379586
bulk = Atoms('Pd4',
             scaled_positions=[(0, 0, 0),
                               (0.5, 0.5, 0),
                               (0.5, 0, 0.5),
                               (0, 0.5, 0.5)],
             cell=[a0, a0, a0],
             pbc=True)
atoms = surface(bulk,(1, 1, 1),4,0.0)
atoms.center(vacuum=10.0, axis=2)

io.write('InitialGeom.traj',atoms)

print atoms
print 'Unit cell array \n', atoms.get_cell()

atoms.set_initial_magnetic_moments([1.0 for a in atoms])
print 'Initial magnetic moment array is', atoms.get_initial_magnetic_moments()

# calculator
calc=espresso(pw=500,
              dw=5000,
              kpts=(6,6,1),
              dipole={'status':True},
              outdir='./',
              xc='BEEF',
              nbands=-30,
              spinpol=True,
              occupations = 'smearing', # 'smearing', 'fixed', 'tetrahedra'
              smearing = 'fd',
              sigma = 0.1,
              output = {'avoidio':False,
                        'removewf':True,
                        'wf_collect':False},
              convergence = {'energy':1e-6*13.6,
                             'mixing':0.1,
                             'maxsteps':500,
                             'diag':'david'},
              nosym=True,
              psppath='/nfs/slac/g/suncatfs/sw/external/esp-psp/v2')

if os.path.exists('qn.traj') and os.path.getsize('qn.traj')!=0:
    atoms=io.read('qn.traj',index=-1)

atoms.set_calculator(calc)

constraint = FixAtoms(mask=[(atom.position[2]-min(atoms.positions[:,2]))<1.5*a0/sqrt(3.0) for atom in atoms])atoms.set_constraint(constraint)
print 'Constraint array is ', constraint

#view(atoms)

from ase.io.trajectory import PickleTrajectory
Traj = PickleTrajectory('qn.traj','a',atoms)
dyn = QuasiNewton(atoms,trajectory=Traj,logfile='qn.log',restart='qn.pckl')
dyn.run(fmax=0.05)

if True:
    dos = calc.calc_pdos(nscf=True,
                         kpts=(12,12,1),
                         Emin=-15.0,
                         Emax=15.0,
                         ngauss=0,
                         sigma=0.2,
                         DeltaE=0.01,
                         tetrahedra=False,
                         slab=True)
    import pickle
    f = open('dos.pickle', 'w')
    pickle.dump(dos, f)
    f.close()

if False:
    dos = calc.calc_pdos(nscf=True,
                         kpts=(24,24,1),
                         Emin=-15.0,
                         Emax=15.0,
                         DeltaE=0.01,
                         tetrahedra=True,
                         slab=True)
    import pickle
    f = open('dos_tetra.pickle', 'w')
    pickle.dump(dos, f)
    f.close()

The following script will plot the density of d-states saved in the pickle file.

#######################################################
## Tutorial by: Hongliang Xin
## Topic: Plotting the density of states data from ase-espresso
##
## dependencies: pickle, matplotlib, numpy
##
## Plots the d density of states of a surface Pd atom in Pd(111) slab
#######################################################

#!/usr/bin/env python

import numpy as np
import matplotlib.pyplot as plt
from pylab import *

import os, sys, pickle

def read_dos(dir,tetrahedra=False):
    import pickle
    try:
        if tetrahedra==True:
            f = open(dir + '/dos_tetra.pickle')
            energies, dos, pdos = pickle.load(f)
            f.close()
        else:
            f = open(dir + '/dos.pickle')
            energies, dos, pdos = pickle.load(f)
            f.close()
    except:
        print "No Density of States DATA Found."
        sys.exit(1)
    return energies, dos, pdos

rcParams['figure.figsize'] = 6*1.67323,4*1.67323
rcParams['ps.useafm'] = True
plt.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})

rcParams['pdf.fonttype'] = 42
matplotlib.rc('xtick.major', size=6)
matplotlib.rc('xtick.minor', size=3)
matplotlib.rc('ytick.major', size=6)
matplotlib.rc('ytick.minor', size=3)
matplotlib.rc('lines', markeredgewidth=0.5*2)
matplotlib.rc('font', size=12*2)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlabel('Energy (eV)')
ax.set_ylabel('PDOS (Arb. Unit)')

num = 12
energies,dos,pdos = read_dos('./')
resov_dos = pdos[num]['d'][0] + pdos[num]['d'][1]
ax.plot(energies,resov_dos,
        color='k',
        linestyle='-',
        label='Pd d DOS')

ax.axis([-10.,10.,0,4.])
plt.xticks([-10.0,-5.0,0.0,5.,10.0])
plt.yticks([0,1,2,3,4])
ax.minorticks_on()

leg=plt.legend(loc=1,prop={'size':24},numpoints=1)
leg.draw_frame(False)

left  = 0.125  # the left side of the subplots of the figure
right = 0.95    # the right side of the subplots of the figure
bottom = 0.2   # the bottom of the subplots of the figure
top = 0.95      # the top of the subplots of the figure
wspace = 0.35   # the amount of width reserved for blank space between subplots
hspace = 0.35   # the amount of height reserved for white space between subplots
subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace)

plt.savefig('dos.png', format='png')
plt.show()

Here is the figure generated from the script, showing the d-states. dos

The pdos variable in the pickle files holds all projected density of states and each channel can be accessed in the following way:

   pdos[atom_nr][band][channel]

where atom_nr (int) selects a particular atom, band selects a band 's', 'p', 'd' and channel the component of that band.

Note: The tetrahedra method can be used by turn on the flag in the pdos calculator as shown above. It usually requires more k-points. It is also very important to know the numbering scheme of different channels of density of states.

1. For spin-unpolarized calculations:
for l=1 (p-orbitals):
  0 sum
  1 pz
  2 px
  3 py

for l=2 (d-orbitals):
  0 sum
  1 dz2 
  2 dzx 
  3 dzy  
  4 dx2-y2
  5 dxy  

2. For spin-polarized calculations:
for l=1 (p-orbitals):
  0 sum up
  1 sum down

  2 pz up
  3 pz down

  4 px up
  5 px down

  6 py up
  7 py down

for l=2 (d-orbitals):
  0 sum up
  1 sum down

  2 dz2 up
  3 dz2 down

  4 dzx up
  5 dzx down

  6 dzy up
  7 dzy down

  8 dx2-y2 up
  9 dx2-y2 down

  10 dxy up
  11 dxy down
Clone this wiki locally