-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
20fd438
commit d73ef68
Showing
1 changed file
with
141 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
# How good are Google's own "patch circuits" and "elided circuits" as a direct XEB approximation to full Sycamore circuits? | ||
# (Are they better than the 2019 Sycamore hardware?) | ||
|
||
import math | ||
import random | ||
import statistics | ||
import sys | ||
|
||
from collections import Counter | ||
|
||
from scipy.stats import binom | ||
|
||
from pyqrack import QrackSimulator | ||
|
||
from qiskit import QuantumCircuit | ||
from qiskit.compiler import transpile | ||
from qiskit_aer.backends import AerSimulator | ||
from qiskit.quantum_info import Statevector | ||
from qiskit.circuit.library import UnitaryGate | ||
|
||
|
||
def factor_width(width): | ||
col_len = math.floor(math.sqrt(width)) | ||
while (((width // col_len) * col_len) != width): | ||
col_len -= 1 | ||
row_len = width // col_len | ||
if col_len == 1: | ||
raise Exception("ERROR: Can't simulate prime number width!") | ||
|
||
return (row_len, col_len) | ||
|
||
|
||
def sqrt_x(circ, q): | ||
ONE_PLUS_I_DIV_2 = 0.5 + 0.5j | ||
ONE_MINUS_I_DIV_2 = 0.5 - 0.5j | ||
circ.append(UnitaryGate([ [ ONE_PLUS_I_DIV_2, ONE_MINUS_I_DIV_2 ], [ ONE_MINUS_I_DIV_2, ONE_PLUS_I_DIV_2 ] ]), [q]) | ||
|
||
|
||
def sqrt_y(circ, q): | ||
ONE_PLUS_I_DIV_2 = 0.5 + 0.5j | ||
ONE_PLUS_I_DIV_2_NEG = -0.5 - 0.5j | ||
circ.append(UnitaryGate([ [ ONE_PLUS_I_DIV_2, ONE_PLUS_I_DIV_2_NEG ], [ ONE_PLUS_I_DIV_2, ONE_PLUS_I_DIV_2 ] ]), [q]) | ||
|
||
|
||
def sqrt_w(circ, q): | ||
diag = math.sqrt(0.5) | ||
m01 = -0.5 - 0.5j | ||
m10 = 0.5 - 0.5j | ||
circ.append(UnitaryGate([ [ diag, m01 ], [ m10, diag ] ]), [q]) | ||
|
||
|
||
|
||
def bench_qrack(width, depth): | ||
# This is a "nearest-neighbor" coupler random circuit. | ||
circ = QuantumCircuit(width) | ||
control = AerSimulator(method="statevector") | ||
shots = 1 << (width + 2) | ||
|
||
lcv_range = range(width) | ||
all_bits = list(lcv_range) | ||
|
||
for d in range(depth): | ||
# Single-qubit gates | ||
for i in lcv_range: | ||
th = random.uniform(0, 2 * math.pi) | ||
ph = random.uniform(0, 2 * math.pi) | ||
lm = random.uniform(0, 2 * math.pi) | ||
circ.u(th, ph, lm, i) | ||
|
||
# 2-qubit couplers | ||
unused_bits = all_bits.copy() | ||
random.shuffle(unused_bits) | ||
while len(unused_bits) > 1: | ||
c = unused_bits.pop() | ||
t = unused_bits.pop() | ||
circ.cx(c, t) | ||
|
||
experiment = QrackSimulator(width) | ||
experiment.run_qiskit_circuit(circ) | ||
|
||
circ_aer = transpile(circ, backend=control) | ||
circ_aer.save_statevector() | ||
job = control.run(circ_aer) | ||
|
||
experiment_counts = dict(Counter(experiment.measure_shots(all_bits, shots))) | ||
control_probs = Statevector(job.result().get_statevector()).probabilities() | ||
|
||
calc_stats(control_probs, experiment_counts, d + 1, shots) | ||
|
||
|
||
def calc_stats(ideal_probs, counts, depth, shots): | ||
# For QV, we compare probabilities of (ideal) "heavy outputs." | ||
# If the probability is above 2/3, the protocol certifies/passes the qubit width. | ||
n_pow = len(ideal_probs) | ||
n = int(round(math.log2(n_pow))) | ||
threshold = statistics.median(ideal_probs) | ||
u_u = statistics.mean(ideal_probs) | ||
numer = 0 | ||
denom = 0 | ||
sum_hog_counts = 0 | ||
for i in range(n_pow): | ||
count = counts[i] if i in counts else 0 | ||
ideal = ideal_probs[i] | ||
|
||
# XEB / EPLG | ||
denom += (ideal - u_u) ** 2 | ||
numer += (ideal - u_u) * ((count / shots) - u_u) | ||
|
||
# QV / HOG | ||
if ideal > threshold: | ||
sum_hog_counts += count | ||
|
||
hog_prob = sum_hog_counts / shots | ||
xeb = numer / denom | ||
# p-value of heavy output count, if method were actually 50/50 chance of guessing | ||
p_val = (1 - binom.cdf(sum_hog_counts - 1, shots, 1 / 2)) if sum_hog_counts > 0 else 1 | ||
|
||
print({ | ||
'qubits': n, | ||
'depth': depth, | ||
'xeb': xeb, | ||
'hog_prob': hog_prob, | ||
'p-value': p_val | ||
}) | ||
|
||
|
||
def main(): | ||
if len(sys.argv) < 3: | ||
raise RuntimeError('Usage: python3 sycamore_2019.py [width] [depth]') | ||
|
||
width = int(sys.argv[1]) | ||
depth = int(sys.argv[2]) | ||
|
||
# Run the benchmarks | ||
bench_qrack(width, depth) | ||
|
||
return 0 | ||
|
||
|
||
if __name__ == '__main__': | ||
sys.exit(main()) |