-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b8cf701
commit 82d8cb9
Showing
4 changed files
with
436 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
# How good are Google's own "patch circuits" and "elided circuits" as a direct XEB approximation to full Sycamore circuits? | ||
# (Are they better than the 2019 Sycamore hardware?) | ||
|
||
import math | ||
import random | ||
import statistics | ||
import sys | ||
import time | ||
|
||
from pyqrack import QrackSimulator | ||
|
||
|
||
def factor_width(width): | ||
col_len = math.floor(math.sqrt(width)) | ||
while (((width // col_len) * col_len) != width): | ||
col_len -= 1 | ||
row_len = width // col_len | ||
if col_len == 1: | ||
raise Exception("ERROR: Can't simulate prime number width!") | ||
|
||
return (row_len, col_len) | ||
|
||
|
||
def ct_pair_prob(sim, q1, q2): | ||
p1 = sim.prob(q1) | ||
p2 = sim.prob(q2) | ||
p1Hi = p1 > p2 | ||
pHi = p1 if p1Hi else p2 | ||
pLo = p2 if p1Hi else p1 | ||
cState = abs(pHi - 0.5) > abs(pLo - 0.5) | ||
t = q1 if p1Hi == cState else q2 | ||
|
||
return cState, t | ||
|
||
|
||
def cz_shadow(sim, q1, q2, anti = False): | ||
if (anti): | ||
sim.x(q1) | ||
cState, t = ct_pair_prob(sim, q1, q2) | ||
if cState: | ||
sim.z(t) | ||
if (anti): | ||
sim.x(q1) | ||
|
||
|
||
def cx_shadow(sim, c, t, anti = False): | ||
sim.h(t) | ||
cz_shadow(sim, c, t, anti) | ||
sim.h(t) | ||
|
||
|
||
def swap_shadow(sim, q1, q2): | ||
cx_shadow(sim, q1, q2) | ||
cx_shadow(sim, q2, q1) | ||
cx_shadow(sim, q1, q2) | ||
|
||
|
||
def sqrt_x(sim, q): | ||
ONE_PLUS_I_DIV_2 = 0.5 + 0.5j | ||
ONE_MINUS_I_DIV_2 = 0.5 - 0.5j | ||
mtrx = [ ONE_PLUS_I_DIV_2, ONE_MINUS_I_DIV_2, ONE_MINUS_I_DIV_2, ONE_PLUS_I_DIV_2 ] | ||
sim.mtrx(mtrx, q); | ||
|
||
|
||
def sqrt_y(sim, q): | ||
ONE_PLUS_I_DIV_2 = 0.5 + 0.5j | ||
ONE_PLUS_I_DIV_2_NEG = -0.5 - 0.5j | ||
mtrx = [ ONE_PLUS_I_DIV_2, ONE_PLUS_I_DIV_2_NEG, ONE_PLUS_I_DIV_2, ONE_PLUS_I_DIV_2 ] | ||
sim.mtrx(mtrx, q); | ||
|
||
def sqrt_w(sim, q): | ||
diag = math.sqrt(0.5); | ||
m01 = -0.5 - 0.5j | ||
m10 = 0.5 - 0.5j | ||
mtrx = [ diag, m01, m10, diag ] | ||
sim.mtrx(mtrx, q); | ||
|
||
|
||
def bench_qrack(width, depth): | ||
# This is a "nearest-neighbor" coupler random circuit. | ||
start = time.perf_counter() | ||
|
||
full_sim = QrackSimulator(width) | ||
patch_sim = QrackSimulator(width) | ||
|
||
row_len, col_len = factor_width(width) | ||
row_bound = row_len >> 1 | ||
col_bound = col_len >> 1 | ||
lcv_range = range(width) | ||
last_gates = [] | ||
|
||
# Nearest-neighbor couplers: | ||
gateSequence = [ 0, 3, 2, 1, 2, 1, 0, 3 ] | ||
one_bit_gates = [ sqrt_x, sqrt_y, sqrt_w ] | ||
|
||
row_len, col_len = factor_width(width) | ||
|
||
for d in range(depth): | ||
# Single-qubit gates | ||
if d == 0: | ||
for i in lcv_range: | ||
g = random.choice(one_bit_gates) | ||
g(full_sim, i) | ||
g(patch_sim, i) | ||
last_gates.append(g) | ||
else: | ||
# Don't repeat the same gate on the next layer. | ||
for i in lcv_range: | ||
temp_gates = one_bit_gates.copy() | ||
temp_gates.remove(last_gates[i]) | ||
g = random.choice(one_bit_gates) | ||
g(full_sim, i) | ||
g(patch_sim, i) | ||
last_gates[i] = g | ||
|
||
# Nearest-neighbor couplers: | ||
############################ | ||
gate = gateSequence.pop(0) | ||
gateSequence.append(gate) | ||
for row in range(1, row_len, 2): | ||
for col in range(col_len): | ||
temp_row = row | ||
temp_col = col | ||
temp_row = temp_row + (1 if (gate & 2) else -1); | ||
temp_col = temp_col + (1 if (gate & 1) else 0) | ||
|
||
# Bounded: | ||
if (temp_row < 0) or (temp_col < 0) or (temp_row >= row_len) or (temp_col >= col_len): | ||
continue | ||
|
||
b1 = row * row_len + col | ||
b2 = temp_row * row_len + temp_col | ||
|
||
if (b1 >= width) or (b2 >= width): | ||
continue | ||
|
||
full_sim.fsim(-math.pi / 2, math.pi / 6, b1, b2) | ||
|
||
# Elide if across patches: | ||
if ((row < row_bound) and (temp_row >= row_bound)) or ((temp_row < row_bound) and row >= row_bound) or ((col < col_bound) and (temp_col >= col_bound)) or ((temp_col < col_bound) and (col >= col_bound)): | ||
# This is our version of ("semi-classical") gate "elision": | ||
|
||
cState, t = ct_pair_prob(patch_sim, b1, b2) | ||
if cState: | ||
# FSim controlled phase | ||
patch_sim.u(t, 0, 0, -math.pi / 6) | ||
|
||
# SWAP(b1, b2) | ||
swap_shadow(patch_sim, b1, b2) | ||
# CZ(b1, b2) | ||
cz_shadow(patch_sim, b1, b2) | ||
# S(b1) | ||
patch_sim.s(b1) | ||
# S(b2) | ||
patch_sim.s(b2) | ||
else: | ||
patch_sim.fsim(-math.pi / 2, math.pi / 6, b1, b2) | ||
|
||
ideal_probs = full_sim.out_probs() | ||
del full_sim | ||
patch_probs = patch_sim.out_probs() | ||
del patch_sim | ||
|
||
return (ideal_probs, patch_probs, time.perf_counter() - start) | ||
|
||
|
||
def calc_stats(ideal_probs, patch_probs, interval, depth): | ||
# For QV, we compare probabilities of (ideal) "heavy outputs." | ||
# If the probability is above 2/3, the protocol certifies/passes the qubit width. | ||
n_pow = len(ideal_probs) | ||
n = int(round(math.log2(n_pow))) | ||
threshold = statistics.median(ideal_probs) | ||
u_u = statistics.mean(ideal_probs) | ||
numer = 0 | ||
denom = 0 | ||
hog_prob = 0 | ||
for b in range(n_pow): | ||
ideal = ideal_probs[b] | ||
patch = patch_probs[b] | ||
|
||
# XEB / EPLG | ||
ideal_centered = (ideal - u_u) | ||
denom += ideal_centered * ideal_centered | ||
numer += ideal_centered * (patch - u_u) | ||
|
||
# QV / HOG | ||
if ideal > threshold: | ||
hog_prob += patch | ||
|
||
xeb = numer / denom | ||
|
||
return { | ||
'qubits': n, | ||
'depth': depth, | ||
'seconds': interval, | ||
'xeb': xeb, | ||
'hog_prob': hog_prob, | ||
'qv_pass': hog_prob >= 2 / 3, | ||
'eplg': (1 - (xeb ** (1 / depth))) if xeb < 1 else 0 | ||
} | ||
|
||
|
||
def main(): | ||
if len(sys.argv) < 3: | ||
raise RuntimeError('Usage: python3 sycamore_2019_elided.py [width] [depth]') | ||
|
||
width = int(sys.argv[1]) | ||
depth = int(sys.argv[2]) | ||
|
||
# Run the benchmarks | ||
result = bench_qrack(width, depth) | ||
# Calc. and print the results | ||
print(calc_stats(result[0], result[1], result[2], depth)) | ||
|
||
return 0 | ||
|
||
|
||
if __name__ == '__main__': | ||
sys.exit(main()) |
Oops, something went wrong.