Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[core] remove beam search from the core #9105

Merged
merged 7 commits into from
Oct 7, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 0 additions & 6 deletions benchmarks/backend_request_func.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ class RequestFuncInput:
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
logprobs: Optional[int] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
Expand All @@ -49,7 +48,6 @@ async def async_request_tgi(
assert api_url.endswith("generate_stream")

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
Expand Down Expand Up @@ -121,7 +119,6 @@ async def async_request_trt_llm(
assert api_url.endswith("generate_stream")

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
Expand Down Expand Up @@ -187,7 +184,6 @@ async def async_request_deepspeed_mii(
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search

payload = {
"prompt": request_func_input.prompt,
Expand Down Expand Up @@ -235,7 +231,6 @@ async def async_request_openai_completions(
), "OpenAI Completions API URL must end with 'completions' or 'profile'."

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
Expand Down Expand Up @@ -317,7 +312,6 @@ async def async_request_openai_chat_completions(
), "OpenAI Chat Completions API URL must end with 'chat/completions'."

async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
Expand Down
3 changes: 1 addition & 2 deletions benchmarks/benchmark_latency.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,8 @@ def main(args: argparse.Namespace):

sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
ignore_eos=True,
max_tokens=args.output_len,
)
Expand Down
24 changes: 11 additions & 13 deletions benchmarks/benchmark_prioritization.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,6 @@ def run_vllm(
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
Expand Down Expand Up @@ -114,9 +113,8 @@ def run_vllm(
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
Expand Down Expand Up @@ -144,15 +142,16 @@ def main(args: argparse.Namespace):
args.output_len)

if args.backend == "vllm":
elapsed_time = run_vllm(
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching, args.enable_chunked_prefill,
args.max_num_batched_tokens, args.gpu_memory_utilization,
args.download_dir)
elapsed_time = run_vllm(requests, args.model, args.tokenizer,
args.quantization, args.tensor_parallel_size,
args.seed, args.n, args.trust_remote_code,
args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
args.enable_prefix_caching,
args.enable_chunked_prefill,
args.max_num_batched_tokens,
args.gpu_memory_utilization, args.download_dir)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
Expand Down Expand Up @@ -203,7 +202,6 @@ def main(args: argparse.Namespace):
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=200,
Expand Down
29 changes: 9 additions & 20 deletions benchmarks/benchmark_throughput.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,6 @@ def run_vllm(
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
Expand All @@ -91,7 +90,6 @@ def run_vllm(
download_dir: Optional[str] = None,
load_format: str = EngineArgs.load_format,
disable_async_output_proc: bool = False,
use_new_beam_search_impl: bool = False,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
Expand Down Expand Up @@ -127,19 +125,19 @@ def run_vllm(
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))

if not use_new_beam_search_impl:
use_beam_search = False
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I keep this dead flag, so that it is possible to benchmark beam search throughput (by changing the code directly), in case someone need it.


if not use_beam_search:
start = time.perf_counter()
llm.generate(prompts, sampling_params, use_tqdm=True)
end = time.perf_counter()
else:
assert use_beam_search
prompts = [prompt for prompt, _, _ in requests]
# output_len should be the same for all requests.
output_len = requests[0][2]
Expand All @@ -165,7 +163,6 @@ async def run_vllm_async(
tensor_parallel_size: int,
seed: int,
n: int,
use_beam_search: bool,
trust_remote_code: bool,
dtype: str,
max_model_len: Optional[int],
Expand Down Expand Up @@ -224,9 +221,8 @@ async def run_vllm_async(
sampling_params.append(
SamplingParams(
n=n,
temperature=0.0 if use_beam_search else 1.0,
temperature=1.0,
top_p=1.0,
use_beam_search=use_beam_search,
ignore_eos=True,
max_tokens=output_len,
))
Expand All @@ -248,11 +244,9 @@ def run_hf(
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
use_beam_search: bool,
max_batch_size: int,
trust_remote_code: bool,
) -> float:
assert not use_beam_search
llm = AutoModelForCausalLM.from_pretrained(
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
if llm.config.model_type == "llama":
Expand Down Expand Up @@ -284,7 +278,7 @@ def run_hf(
padding=True).input_ids
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=not use_beam_search,
do_sample=True,
num_return_sequences=n,
temperature=1.0,
top_p=1.0,
Expand Down Expand Up @@ -340,7 +334,7 @@ def main(args: argparse.Namespace):
if args.backend == "vllm":
run_args = [
requests, args.model, args.tokenizer, args.quantization,
args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
args.tensor_parallel_size, args.seed, args.n,
args.trust_remote_code, args.dtype, args.max_model_len,
args.enforce_eager, args.kv_cache_dtype,
args.quantization_param_path, args.device,
Expand All @@ -355,12 +349,11 @@ def main(args: argparse.Namespace):
run_args.append(args.disable_frontend_multiprocessing)
elapsed_time = uvloop.run(run_vllm_async(*run_args))
else:
elapsed_time = run_vllm(*run_args, args.use_new_beam_search_impl)
elapsed_time = run_vllm(*run_args)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
args.hf_max_batch_size, args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
Expand Down Expand Up @@ -414,8 +407,6 @@ def main(args: argparse.Namespace):
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--use-new-beam-search-impl", action="store_true")
parser.add_argument("--num-prompts",
type=int,
default=1000,
Expand Down Expand Up @@ -570,8 +561,6 @@ def main(args: argparse.Namespace):
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
Expand Down
3 changes: 0 additions & 3 deletions examples/llm_engine_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,6 @@ def create_test_prompts() -> List[Tuple[str, SamplingParams]]:
temperature=0.8,
top_p=0.95,
frequency_penalty=0.1)),
("It is only with the heart that one can see rightly",
SamplingParams(n=3, best_of=3, use_beam_search=True,
temperature=0.0)),
]


Expand Down
18 changes: 0 additions & 18 deletions examples/multilora_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,15 +43,6 @@ def create_test_prompts(
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501
SamplingParams(n=3,
best_of=3,
use_beam_search=True,
temperature=0,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501
SamplingParams(temperature=0.0,
Expand All @@ -60,15 +51,6 @@ def create_test_prompts(
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora2", 2, lora_path)),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501
SamplingParams(n=3,
best_of=3,
use_beam_search=True,
temperature=0,
max_tokens=128,
stop_token_ids=[32003]),
LoRARequest("sql-lora", 1, lora_path)),
]


Expand Down
Loading
Loading