Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Misc] Add multipstep chunked-prefill support for FlashInfer #10467

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 17 additions & 2 deletions tests/multi_step/test_correctness_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@

import pytest

from tests.kernels.utils import override_backend_env_variable

from ..models.utils import check_logprobs_close, check_outputs_equal

MODELS = [
Expand All @@ -19,10 +21,11 @@
@pytest.mark.parametrize("tp_size", [1])
@pytest.mark.parametrize("enable_chunked_prefill", [False, True])
@pytest.mark.parametrize("max_tokens", [5])
@pytest.mark.parametrize("enforce_eager", [True])
@pytest.mark.parametrize("enforce_eager", [True, False])
@pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS)
@pytest.mark.parametrize("num_prompts", NUM_PROMPTS)
@pytest.mark.parametrize("num_logprobs", [None, 5])
@pytest.mark.parametrize("attention_backend", ["FLASH_ATTN", "FLASHINFER"])
def test_multi_step_llm(
hf_runner,
vllm_runner,
Expand All @@ -36,6 +39,8 @@ def test_multi_step_llm(
num_scheduler_steps: int,
num_prompts: int,
num_logprobs: Optional[int],
attention_backend: str,
monkeypatch,
) -> None:
"""Test vLLM engine with multi-step scheduling via sync LLM Engine.

Expand Down Expand Up @@ -63,6 +68,7 @@ def test_multi_step_llm(
num_logprobs: corresponds to the `logprobs` argument to the OpenAI
completions endpoint; `None` -> 1 logprob returned.
"""
override_backend_env_variable(monkeypatch, attention_backend)

prompts = example_prompts
if len(prompts) < num_prompts:
Expand Down Expand Up @@ -110,10 +116,11 @@ def test_multi_step_llm(
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("tp_size", [1])
@pytest.mark.parametrize("max_tokens", [5])
@pytest.mark.parametrize("enforce_eager", [True])
@pytest.mark.parametrize("enforce_eager", [True, False])
@pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS)
@pytest.mark.parametrize("num_prompts", NUM_PROMPTS)
@pytest.mark.parametrize("num_logprobs,num_prompt_logprobs", [(5, 5)])
@pytest.mark.parametrize("attention_backend", ["FLASH_ATTN", "FLASHINFER"])
def test_multi_step_llm_w_prompt_logprobs(
vllm_runner,
example_prompts,
Expand All @@ -126,6 +133,8 @@ def test_multi_step_llm_w_prompt_logprobs(
num_prompts: int,
num_logprobs: Optional[int],
num_prompt_logprobs: Optional[int],
attention_backend: str,
monkeypatch,
) -> None:
"""Test prompt logprobs with multi-step scheduling via sync LLM Engine.

Expand Down Expand Up @@ -155,6 +164,7 @@ def test_multi_step_llm_w_prompt_logprobs(
note that this argument is not supported by the
OpenAI completions endpoint.
"""
override_backend_env_variable(monkeypatch, attention_backend)

prompts = example_prompts
if len(prompts) < num_prompts:
Expand Down Expand Up @@ -205,6 +215,7 @@ def test_multi_step_llm_w_prompt_logprobs(
@pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS)
@pytest.mark.parametrize("num_prompts", NUM_PROMPTS)
@pytest.mark.parametrize("num_logprobs", [None, 5])
@pytest.mark.parametrize("attention_backend", ["FLASH_ATTN"])
def test_multi_step_llm_chunked_prefill_prefix_cache(
vllm_runner,
example_prompts,
Expand All @@ -216,6 +227,8 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
num_scheduler_steps: int,
num_prompts: int,
num_logprobs: Optional[int],
attention_backend: str,
monkeypatch,
) -> None:
"""Test vLLM engine with multi-step+"single-step chunked prefill"+APC.

Expand Down Expand Up @@ -278,6 +291,8 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
#
# The Incorrect scheduling behavior - if it occurs - will cause an exception
# in the model runner resulting from `do_sample=False`.
override_backend_env_variable(monkeypatch, attention_backend)

assert len(example_prompts) >= 2
challenge_prompts = copy.deepcopy(example_prompts)
challenge_prompts[0] = ('vLLM is a high-throughput and memory-efficient '
Expand Down
26 changes: 21 additions & 5 deletions vllm/attention/backends/flashinfer.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,7 +256,9 @@ def prepare_graph_input_buffers(self,
def begin_forward(self, model_input):
assert not self._is_graph_capturing
state = self
if model_input.attn_metadata.use_cuda_graph:
use_cuda_graph = model_input.attn_metadata.use_cuda_graph
is_decode = model_input.attn_metadata.num_prefills == 0
if use_cuda_graph and is_decode:
batch_size = model_input.input_tokens.shape[0]
state = (self.runner.graph_runners[model_input.virtual_engine]
[batch_size].attn_state)
Expand Down Expand Up @@ -429,10 +431,24 @@ def advance_step(self,
Update metadata in-place to advance one decode step.
"""

assert not turn_prefills_into_decodes, \
("Chunked prefill is not supported with flashinfer yet."
"turn_prefills_into_decodes is a Multi-Step + Chunked-Prefill "
"specific parameter.")
if turn_prefills_into_decodes:
# When Multi-Step is enabled with Chunked-Prefill, prefills and
# decodes are scheduled together. In the first step, all the
# prefills turn into decodes. This update reflects that
# conversion.
assert self.num_decode_tokens + self.num_prefills == num_seqs
# Flashinfer doesn't support speculative decoding + chunked-prefill
# + multi-step scheduling yet.
assert self.decode_query_len == 1
self.num_decode_tokens += self.num_prefills
self.num_prefills = 0
self.num_prefill_tokens = 0
self.max_prefill_seq_len = 0
self.max_query_len = 1

self.slot_mapping = self.slot_mapping[:num_seqs]
else:
assert self.seq_lens_tensor is not None

assert num_seqs > 0
assert num_queries > 0
Expand Down
6 changes: 5 additions & 1 deletion vllm/worker/model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -789,7 +789,7 @@ def _get_cuda_graph_pad_size(self,
is_mscp: bool = self.runner.scheduler_config.is_multi_step and \
self.runner.scheduler_config.chunked_prefill_enabled
decode_only = self.decode_only or is_mscp
if not decode_only:
if not decode_only or self.runner.is_profile_run:
# Early exit so we can treat num_seqs as the batch_size below.
return -1

Expand Down Expand Up @@ -1025,6 +1025,8 @@ def __init__(

self.has_inner_state = model_config.has_inner_state

self.is_profile_run = False

# When using CUDA graph, the input block tables must be padded to
# max_seq_len_to_capture. However, creating the block table in
# Python can be expensive. To optimize this, we cache the block table
Expand Down Expand Up @@ -1226,6 +1228,7 @@ def _prepare_model_input_tensors(

@torch.inference_mode()
def profile_run(self) -> None:
self.is_profile_run = True
# Enable top-k sampling to reflect the accurate memory usage.
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
Expand Down Expand Up @@ -1327,6 +1330,7 @@ def profile_run(self) -> None:

self.execute_model(model_input, kv_caches, intermediate_tensors)
torch.cuda.synchronize()
self.is_profile_run = False
return

def remove_all_loras(self):
Expand Down
2 changes: 1 addition & 1 deletion vllm/worker/multi_step_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
MULTI_STEP_ATTENTION_BACKENDS = [
"FLASH_ATTN", "ROCM_FLASH", "FLASHINFER", "NO_ATTENTION"
]
MULTI_STEP_CHUNKED_PREFILL_ATTENTION_BACKENDS = ["FLASH_ATTN"]
MULTI_STEP_CHUNKED_PREFILL_ATTENTION_BACKENDS = ["FLASH_ATTN", "FLASHINFER"]

def _get_supported_attention_backends(chunked_prefill_enabled: bool) \
-> List[str]:
Expand Down
Loading