- Instructions for demo
python3 demo.py input_video_path="input/dinner.mp4" \
- Prepare dataset
- For age and gender: IMDB + WiKi[6]
- For emotion: FER-2013[7]
- Instructions for train
- If train with backone 'ShuffleNet V2', using train_shufflenet.py
- If train with backone 'WideResNet', using train.py
- imdb_db.mat, wiki_db.mat: please refer to [2] to run "create_db.py"
- fer2013.csv": download from Kaggle
python3 train_shufflenet.py --input_agender data/imdb_db.mat --input_wiki data/wiki_db.mat --input_emotion data/fer2013.csv --nb_epochs 30 --staircase_decay_at_epochs (5,8,) --lr 0.1 --validation_split 0.15 --batch_size 64
[1] R. Rothe, R. Timofte, and L. V. Gool, "DEX: Deep EXpectation of apparent age from a single image," in Proc. of ICCV, 2015.
[2] yu4u/age-gender-estimation
[3] opconty/keras-shufflenetV2
[4] lmeulen/AgeGenderEmotion
[5] oarriaga/face_classification
[6] IMDB-WIKI – 500k+ face images with age and gender labels
[7] Challenges in Representation Learning: Facial Expression Recognition Challenge