Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: updates SOURCES.md and adds generation script for unemployment-… #605

Merged
merged 4 commits into from
Sep 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions SOURCES.md
Original file line number Diff line number Diff line change
Expand Up @@ -313,6 +313,25 @@ S&P 500 index values from 2000 to 2020, retrieved from [Yahoo Finance](https

## `unemployment-across-industries.json`

Industry-level unemployment statistics from the [Current Population Survey](https://www.census.gov/programs-surveys/cps.html) (CPS), published monthly by the U.S. Bureau of Labor Statistics. Includes unemployed persons and unemployment rate across 11 private industries, as well as agricultural, government, and self-employed workers. Covers January 2000 through February 2010. Industry classification follows format of CPS [Table A-31](https://www.bls.gov/web/empsit/cpseea31.htm).

### Data Structure
Each entry in the JSON file contains:
- `series`: Industry name
- `year`: Year (2000-2010)
- `month`: Month (1-12)
- `count`: Number of unemployed persons (in thousands)
- `rate`: Unemployment rate (percentage)
- `date`: [ISO 8601](https://www.iso.org/iso-8601-date-and-time-format.html)-formatted date string (e.g., "2000-01-01T08:00:00.000Z")

The dataset can be replicated using the BLS API. For more, see the `scripts` folder of this repository.

### Citing Data
The BLS Web site states:
> "Users of the public API should cite the date that data were accessed or retrieved using the API. Users must clearly state that “BLS.gov cannot vouch for the data or analyses derived from these data after the data have been retrieved from BLS.gov.” The BLS.gov logo may not be used by persons who are not BLS employees or on products (including web pages) that are not BLS-sponsored."

See full BLS [terms of service](https://www.bls.gov/developers/termsOfService.htm).

## `unemployment.tsv`

## `us-10m.json`
Expand Down
196 changes: 196 additions & 0 deletions scripts/make-unemployment-across-industries.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
import requests
import json
from datetime import datetime, timedelta
import os
import argparse
from pytz import timezone

"""
make-unemployment-across-industries.py for vega-datasets

This script fetches unemployment data across industries from the Bureau of Labor Statistics (BLS) API
and processes it into a structured JSON format for use in the vega-datasets repository, replicating
the originally uploaded version of the dataset. The timestamp for each data point is adjusted
based on Daylight Saving Time (DST) in the United States to match the original json file's timestamps.
By default the script will output to unemployment-across-industries.json in the `data` folder.

Usage:
python make-unemployment-across-industries.py --api_key YOUR_API_KEY [--output_file OUTPUT_FILE]

Requirements:
- A BLS API key (v2.0, obtain from https://www.bls.gov/developers/)
- Python 3.6+
- requests library (install with 'pip install requests')
- pytz library (install with 'pip install pytz')

BLS Series IDs:
Government: rate: LNU04028615, count: LNU03028615
Mining and Extraction: rate: LNU04032230, count: LNU03032230
Construction: rate: LNU04032231, count: LNU03032231
Manufacturing: rate: LNU04032232, count: LNU03032232
Wholesale and Retail Trade: rate: LNU04032235, count: LNU03032235
Transportation and Utilities:rate: LNU04032236, count: LNU03032236
Information: rate: LNU04032237, count: LNU03032237
Finance: rate: LNU04032238, count: LNU03032238
Business services: rate: LNU04032239, count: LNU03032239
Education and Health: rate: LNU04032240, count: LNU03032240
Leisure and hospitality: rate: LNU04032241, count: LNU03032241
Other: rate: LNU04032242, count: LNU03032242
Agriculture: rate: LNU04035109, count: LNU03035109
Self-employed: rate: LNU04035181, count: LNU03035181
"""

# Constants
API_URL = 'https://api.bls.gov/publicAPI/v2/timeseries/data/'
START_YEAR = 2000
END_YEAR = 2010
END_MONTH = 2 # February

# Series order
series_order = ['Government', 'Mining and Extraction', 'Construction', 'Manufacturing',
'Wholesale and Retail Trade', 'Transportation and Utilities', 'Information',
'Finance', 'Business services', 'Education and Health', 'Leisure and hospitality',
'Other', 'Agriculture', 'Self-employed']

# Updated mapping with separate rate and count codes
bls_mapping = {
'Government': {'rate': 'LNU04028615', 'count': 'LNU03028615'},
'Mining and Extraction': {'rate': 'LNU04032230', 'count': 'LNU03032230'},
'Construction': {'rate': 'LNU04032231', 'count': 'LNU03032231'},
'Manufacturing': {'rate': 'LNU04032232', 'count': 'LNU03032232'},
'Wholesale and Retail Trade': {'rate': 'LNU04032235', 'count': 'LNU03032235'},
'Transportation and Utilities': {'rate': 'LNU04032236', 'count': 'LNU03032236'},
'Information': {'rate': 'LNU04032237', 'count': 'LNU03032237'},
'Finance': {'rate': 'LNU04032238', 'count': 'LNU03032238'},
'Business services': {'rate': 'LNU04032239', 'count': 'LNU03032239'},
'Education and Health': {'rate': 'LNU04032240', 'count': 'LNU03032240'},
'Leisure and hospitality': {'rate': 'LNU04032241', 'count': 'LNU03032241'},
'Other': {'rate': 'LNU04032242', 'count': 'LNU03032242'},
'Agriculture': {'rate': 'LNU04035109', 'count': 'LNU03035109'},
'Self-employed': {'rate': 'LNU04035181', 'count': 'LNU03035181'}
}

def is_dst(dt):
eastern = timezone('US/Eastern')
aware_dt = eastern.localize(dt)
return aware_dt.dst() != timedelta(0)

def fetch_bls_data(series_ids, api_key):
headers = {'Content-Type': 'application/json'}
data = json.dumps({
"seriesid": series_ids,
"startyear": str(START_YEAR),
"endyear": str(END_YEAR),
"registrationkey": api_key
})

response = requests.post(API_URL, data=data, headers=headers)
return json.loads(response.text)

def process_bls_data(json_data):
processed_data = {}
for series in json_data['Results']['series']:
series_id = series['seriesID']

# Find the corresponding series name
for series_name, codes in bls_mapping.items():
if series_id in codes.values():
data_type = 'rate' if series_id == codes['rate'] else 'count'
break
else:
continue # Skip if series_id not found in mapping

for item in series['data']:
year = int(item['year'])
month = int(item['period'][1:]) # Convert 'M01' to 1, 'M02' to 2, etc.

# Only process data up to February 2010
if year == END_YEAR and month > END_MONTH:
continue

value = float(item['value'])

# Determine the correct hour based on DST
dt = datetime(year, month, 1)
hour = 7 if is_dst(dt) else 8
date = dt.replace(hour=hour).isoformat() + '.000Z'

key = (series_name, year, month)
if key not in processed_data:
processed_data[key] = {
"series": series_name,
"year": year,
"month": month,
"date": date
}

if data_type == 'rate':
value = int(value) if value.is_integer() else value
else: # count
value = int(value)

processed_data[key][data_type] = value

return list(processed_data.values())

def order_data(data):
series_order_dict = {series: index for index, series in enumerate(series_order)}
return sorted(data, key=lambda x: (series_order_dict[x['series']], x['year'], x['month']))

def main(api_key, output_file):
# Get all series IDs from the mapping
series_ids = [code for codes in bls_mapping.values() for code in codes.values()]

# Fetch data from BLS API
print("Fetching data from BLS API...")
raw_data = fetch_bls_data(series_ids, api_key)

# Process the raw data
print("Processing raw data...")
processed_data = process_bls_data(raw_data)

# Order the processed data
print("Ordering processed data...")
ordered_data = order_data(processed_data)

# Reorder the data to match the specified order
reordered_data = []
for item in ordered_data:
reordered_item = {
"series": item["series"],
"year": item["year"],
"month": item["month"],
"count": item.get("count", None), # Use get() to handle missing keys
"rate": item.get("rate", None), # Use get() to handle missing keys
"date": item["date"]
}
reordered_data.append(reordered_item)

# Construct the path to the data folder
script_dir = os.path.dirname(os.path.abspath(__file__))
root_dir = os.path.dirname(script_dir)
data_dir = os.path.join(root_dir, 'data')

# Ensure the data directory exists
os.makedirs(data_dir, exist_ok=True)

# Construct the full path for the output file
output_path = os.path.join(data_dir, output_file)

# Write to JSON file
print(f"Creating JSON file: {output_path}")
json_output = json.dumps(reordered_data, separators=(',', ':'))

# Save JSON file
with open(output_path, 'w', newline='') as f:
f.write(json_output + '\n')

print(f"Data has been processed and saved to '{output_path}'")

if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate unemployment across industries data for vega-datasets")
parser.add_argument("--api_key", required=True, help="BLS API key")
parser.add_argument("--output_file", default="unemployment-across-industries.json", help="Output JSON file name")
args = parser.parse_args()

main(args.api_key, args.output_file)