Skip to content

Commit

Permalink
Merge pull request #208 from valory-xyz/fix/tools
Browse files Browse the repository at this point in the history
Fix/tools
  • Loading branch information
0xArdi authored Apr 8, 2024
2 parents 24a5a99 + ed34423 commit 0179545
Show file tree
Hide file tree
Showing 27 changed files with 613 additions and 178 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2024 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------

"""This module contains the prediction request rag claude tool."""
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
name: prediction_request_rag_claude
author: napthaai
version: 0.1.0
type: custom
description: A tool for making binary predictions on markets using claude.
license: Apache-2.0
aea_version: '>=1.0.0, <2.0.0'
fingerprint:
__init__.py: bafybeihd72xjbjzbqcpm3qfaimqk3ts3qx2l4w2lhca2e4ruso7jngmmce
prediction_request_rag_claude.py: bafybeibxeaoizixha4po7apf4k7gix2hi7x54hwqx4oyp23bwdgao6fv2u
fingerprint_ignore_patterns: []
entry_point: prediction_request_rag_claude.py
callable: run
dependencies:
google-api-python-client:
version: ==2.95.0
googlesearch-python:
version: ==1.2.3
requests: {}
markdownify:
version: ==0.11.6
readability-lxml:
version: ==0.8.1
anthropic:
version: ==0.21.3
tiktoken:
version: ==0.5.1
pydantic:
version: '>=1.9.0,<3'
faiss-cpu:
version: ==1.7.4
openai:
version: ==1.11.0
docstring-parser:
version: ==0.15
pypdf2:
version: ==3.0.1
numpy:
version: '>=1.19.0'
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ license: Apache-2.0
aea_version: '>=1.0.0, <2.0.0'
fingerprint:
__init__.py: bafybeib36ew6vbztldut5xayk5553rylrq7yv4cpqyhwc5ktvd4cx67vwu
prediction_request_reasoning.py: bafybeifjm24tqil3nan37dbg4u7qm3xw3jxfu5eleg3cojmka67dwaclpa
prediction_request_reasoning.py: bafybeid3umzaz7qzxyf4pda6ffmayyhmr7fjx35bk4qzpsi33rtanddrem
fingerprint_ignore_patterns: []
entry_point: prediction_request_reasoning.py
callable: run
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -681,114 +681,117 @@ def extract_question(prompt: str) -> str:

def run(**kwargs) -> Tuple[str, Optional[str], Optional[Dict[str, Any]], Any]:
"""Run the task"""
with OpenAIClientManager(kwargs["api_keys"]["openai"]):
tool = kwargs["tool"]
prompt = extract_question(kwargs["prompt"])
num_urls = kwargs.get("num_urls", DEFAULT_NUM_URLS[tool])
counter_callback = kwargs.get("counter_callback", None)
api_keys = kwargs.get("api_keys", {})
google_api_key = api_keys.get("google_api_key", None)
google_engine_id = api_keys.get("google_engine_id", None)
temperature = kwargs.get("temperature", DEFAULT_OPENAI_SETTINGS["temperature"])
max_tokens = kwargs.get("max_tokens", DEFAULT_OPENAI_SETTINGS["max_tokens"])
engine = kwargs.get("model", TOOL_TO_ENGINE[tool])
print(f"ENGINE: {engine}")
if tool not in ALLOWED_TOOLS:
raise ValueError(f"Tool {tool} is not supported.")

(
additional_information,
queries,
counter_callback,
) = fetch_additional_information(
client=client,
prompt=prompt,
engine=engine,
google_api_key=google_api_key,
google_engine_id=google_engine_id,
counter_callback=counter_callback,
source_links=kwargs.get("source_links", None),
num_urls=num_urls,
temperature=temperature,
max_tokens=max_tokens,
)
try:
with OpenAIClientManager(kwargs["api_keys"]["openai"]):
tool = kwargs["tool"]
prompt = extract_question(kwargs["prompt"])
num_urls = kwargs.get("num_urls", DEFAULT_NUM_URLS[tool])
counter_callback = kwargs.get("counter_callback", None)
api_keys = kwargs.get("api_keys", {})
google_api_key = api_keys.get("google_api_key", None)
google_engine_id = api_keys.get("google_engine_id", None)
temperature = kwargs.get("temperature", DEFAULT_OPENAI_SETTINGS["temperature"])
max_tokens = kwargs.get("max_tokens", DEFAULT_OPENAI_SETTINGS["max_tokens"])
engine = kwargs.get("model", TOOL_TO_ENGINE[tool])
print(f"ENGINE: {engine}")
if tool not in ALLOWED_TOOLS:
raise ValueError(f"Tool {tool} is not supported.")

(
additional_information,
queries,
counter_callback,
) = fetch_additional_information(
client=client,
prompt=prompt,
engine=engine,
google_api_key=google_api_key,
google_engine_id=google_engine_id,
counter_callback=counter_callback,
source_links=kwargs.get("source_links", None),
num_urls=num_urls,
temperature=temperature,
max_tokens=max_tokens,
)

# Adjust the additional_information to fit within the token budget
adjusted_info = adjust_additional_information(
prompt=PREDICTION_PROMPT,
additional_information=additional_information,
model=engine,
)
# Adjust the additional_information to fit within the token budget
adjusted_info = adjust_additional_information(
prompt=PREDICTION_PROMPT,
additional_information=additional_information,
model=engine,
)

# Reasoning prompt
reasoning_prompt = REASONING_PROMPT.format(
user_prompt=prompt, formatted_docs=adjusted_info
)
# Reasoning prompt
reasoning_prompt = REASONING_PROMPT.format(
user_prompt=prompt, formatted_docs=adjusted_info
)

# Do reasoning
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": reasoning_prompt,
},
]
# Do reasoning
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": reasoning_prompt,
},
]

# Reasoning
response_reasoning = client.chat.completions.create(
model=engine,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
timeout=150,
stop=None,
)
# Reasoning
response_reasoning = client.chat.completions.create(
model=engine,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
timeout=150,
stop=None,
)

# Extract the reasoning
reasoning = response_reasoning.choices[0].message.content
# Extract the reasoning
reasoning = response_reasoning.choices[0].message.content

# Prediction prompt
prediction_prompt = PREDICTION_PROMPT.format(
user_prompt=prompt, reasoning=reasoning
)
# Prediction prompt
prediction_prompt = PREDICTION_PROMPT.format(
user_prompt=prompt, reasoning=reasoning
)

# Make the prediction
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": prediction_prompt,
},
]
# Make the prediction
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": prediction_prompt,
},
]

response = client.chat.completions.create(
model=engine,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
timeout=150,
stop=None,
functions=[Results.openai_schema],
function_call={'name':'Results'}
)
results = str(Results.from_response(response))

pairs = str(results).split()
result_dict = {}
for pair in pairs:
key, value = pair.split("=")
result_dict[key] = float(value) # Convert value to float
results = result_dict
results = json.dumps(results)
if counter_callback is not None:
counter_callback(
input_tokens=response_reasoning.usage.prompt_tokens
+ response.usage.prompt_tokens,
output_tokens=response_reasoning.usage.completion_tokens
+ response.usage.completion_tokens,
response = client.chat.completions.create(
model=engine,
token_counter=count_tokens,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
timeout=150,
stop=None,
functions=[Results.openai_schema],
function_call={'name':'Results'}
)
return results, reasoning_prompt + "////" + prediction_prompt, None, counter_callback
results = str(Results.from_response(response))

pairs = str(results).split()
result_dict = {}
for pair in pairs:
key, value = pair.split("=")
result_dict[key] = float(value) # Convert value to float
results = result_dict
results = json.dumps(results)
if counter_callback is not None:
counter_callback(
input_tokens=response_reasoning.usage.prompt_tokens
+ response.usage.prompt_tokens,
output_tokens=response_reasoning.usage.completion_tokens
+ response.usage.completion_tokens,
model=engine,
token_counter=count_tokens,
)
return results, reasoning_prompt + "////" + prediction_prompt, None, counter_callback
except Exception as e:
return f"Invalid response. The following issue was encountered: {str(e)}", "", None, None
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
name: prediction_request_reasoning_claude
author: napthaai
version: 0.1.0
type: custom
description: A tool for making binary predictions on markets using claude.
license: Apache-2.0
aea_version: '>=1.0.0, <2.0.0'
fingerprint:
__init__.py: bafybeib36ew6vbztldut5xayk5553rylrq7yv4cpqyhwc5ktvd4cx67vwu
prediction_request_reasoning_claude.py: bafybeian5oyo5v4qvnocxhpgtxcvitlzwsa7hag4lwydmyyth2r7u6dine
fingerprint_ignore_patterns: []
entry_point: prediction_request_reasoning_claude.py
callable: run
dependencies:
google-api-python-client:
version: ==2.95.0
googlesearch-python:
version: ==1.2.3
requests: {}
markdownify:
version: ==0.11.6
readability-lxml:
version: ==0.8.1
openai:
version: ==1.11.0
tiktoken:
version: ==0.5.1
pypdf2:
version: ==3.0.1
numpy:
version: '>=1.19.0'
pydantic:
version: '>=1.9.0,<3'
faiss-cpu:
version: ==1.7.4
docstring-parser:
version: ==0.15
anthropic:
version: ==0.21.3
20 changes: 20 additions & 0 deletions packages/napthaai/customs/prediction_url_cot/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2024 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------

"""This module contains the prediction url cot tool."""
37 changes: 37 additions & 0 deletions packages/napthaai/customs/prediction_url_cot/component.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
name: prediction_url_cot
author: napthaai
version: 0.1.0
type: custom
description: A tool for making binary predictions on markets.
license: Apache-2.0
aea_version: '>=1.0.0, <2.0.0'
fingerprint:
__init__.py: bafybeiflni5dkn5fqe7fnu4lgbqxzfrgochhqfbgzwz3vlf5grijp3nkpm
prediction_url_cot.py: bafybeiczvut645b7xma2x6ivadhdbbqrvwusjoczidv2bwfbhidazshlfu
fingerprint_ignore_patterns: []
entry_point: prediction_url_cot.py
callable: run
dependencies:
google-api-python-client:
version: ==2.95.0
googlesearch-python:
version: ==1.2.3
requests: {}
markdownify:
version: ==0.11.6
readability-lxml:
version: ==0.8.1
anthropic:
version: ==0.21.3
tiktoken:
version: ==0.5.1
pypdf2:
version: ==3.0.1
numpy:
version: '>=1.19.0'
pydantic:
version: '>=1.9.0,<3'
openai:
version: ==1.11.0
docstring-parser:
version: ==0.15
Loading

0 comments on commit 0179545

Please sign in to comment.