Skip to content

This is a list of useful information about urban mobility prediction. Related papers, datasets and codes are included.

Notifications You must be signed in to change notification settings

urbanmobility/Awesome-Urban-Mobility-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 

Repository files navigation

This is a list of useful information about urban mobility prediction. Related papers, datasets and codes are included.

Dataset

  1. Foursquare
  2. Gowalla
  3. Yelp
  4. Brightkite
  5. Weeplaces
  6. Instagram

Next Place Recommendation

Papers Authors Code Year Venue Performance
A recurrent model with spatial and temporal contexts.(ST-RNN)(Paper) Qiang Liu(CAS), Shu Wu, Liang Wang, Tieniu Tan Code 2016 AAAI Gowalla:
Rec@5 =0.1524, Rec@10=0.2714.
GTD:
Rec@5=0.4986, Rec@10=0.6812.
Geo-teaser: Geo-temporal sequential embedding rank for point-of-interest recommendation.(Geo-teaser)(Paper) Shenglin Zhao(CUHK), Tong Zhao, Irwin King, and Michael R. Lyu Code 2017 WWW Foursquare:
Prec@5=0.13, Prec@10=0.1, Rec@5=0.15, Rec@10=0.2
Gowalla:
Prec@5=0.16, Prec@10=0.13, Rec@5=0.07, Rec@10=0.1
Next point-of-interest recommendation with temporal and multi-level context attention.(TMCA)(Paper) Ranzhen Li(SJTU), Yanyan Shen, Yanmin Zhu Code 2018 ICDM Gowalla:
Rec@5=0.21926, Rec@10=0.27725.
Foursquare:
Rec@5=0.02870, Rec@10=0.04809.
HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction.(HST-LSTM)(Paper) Dejiang Kong(ZJU), Fei Wu None 2018 IJCAI Baidu Map:
Acc@10=0.4847, Acc@20=0.5657.
Content-aware hierarchical point-of-interest embedding model for successive poi recommendation.(CAPE)(Paper) Buru Chang(KU), Yonggyu Park, Donghyeon Park, Seongsoon Kim, Jaewoo Kang Code 2018 IJCAI With STELLAR:
Rec@5=0.2384, Rec@10=0.2989.
With LSTM:
Rec@5=0.2412, Rec@10=0.3054.
With GRU:
Rec@5=0.2433, Rec@10=0.3079.
With ST-RNN:
Rec@5=0.2239, Rec@10=0.2601.
DeepMove: Predicting Human Mobility with Attentional Recurrent Networks.(DeepMove)(Paper) Jie Feng(THU), Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, Depeng Jin Code 2018 WWW Foursquare (NY):
Rec@5=0.3372, Rec@10=0.4091.
Gowalla:
Rec@5=0.2021, Rec@10=0.2510.
Long-and short-term preference learning for next poi recommendation.(LSPL)(Paper) Yuxia Wu(XJTU), Ke Li, Guoshuai Zhao, Xueming Qian None 2019 CIKM Foursquare (NYC):
Prec3@10=0.3901, Prec@20=0.4461.
Foursquare (TKY):
Prec@10=0.3986, Prec@20=0.4596.
Where to go next: A spatio-temporal gated network for next poi recommendation.(STGN)(Paper19, Paper20) Pengpeng Zhao(SUDA), Haifeng Zhu, Yanchi Liu, Jiajie Xu, Zhixu Li, Fuzhen Zhuang, Victor S. Sheng, Xiaofang Zhou None 2019 AAAI (2020 TKDE) Foursquare (CA):
Acc@5=0.1308, Acc@10=0.1612.
Foursquare (SIN):
Acc@5=0.2737, Acc@10=0.3017.
Gowalla:
Acc@5=0.1644, Acc@10=0.2020.
Brightkite:
Acc@5=0.4953, Acc@10=0.5231.
Topic-Enhanced Memory Networks for Personalised Point-of-Interest Recommendation.(TEMN)(Paper) Xiao Zhou(Cambridge), Cecilia Mascolo, Zhongxiang Zhao Code 2019 KDD WeChat (GPR):
TEMN (GPR): Acc@5=0.70389, Acc@10=0.81752.
TEMN (CPR): Acc@5=0.72876, Acc@10=0.83398.
Location prediction over sparse user mobility traces using rnns: Flashback in hidden states!(Flashback)(Paper) Dingqi Yang(UM), Benjamin Fankhauser, Paolo Rosso, Philippe Cudre-Mauroux Code 2020 IJCAI Foursquare:
Acc2@5=0.5399, Acc@10=0.6236.
Gowalla:
Acc@5=0.2754, Acc@10=0.3479.
Discovering subsequence patterns for next poi recommendation!(ASPPA)(Paper) Kangzhi Zhao(THU) None 2020 IJCAI Foursquare (US):
Acc@10=0.3371, Acc@20=0.3950.
Gowalla:
Acc@10=0.2947, Acc@20=0.3573.
Next Point-of-Interest Recommendation on Resource-Constrained Mobile Devices.(LLRec)(Paper) Qinyong Wang(UQ) None 2020 WWW Foursquare:
Acc@10=0.3542, Acc@20=0.4594.
Gowalla:
Acc@10=0.3874, Acc@20=0.4781.
Personalized Long- and Short-term Preference Learning for Next POI Recommendation.(PLSPL)(Paper) Yuxia Wu(XJTU), Ke Li, Guoshuai Zhao, Xueming Qian None 2020 TKDE Foursquare (NYC):
Prec@10=0.3953, Prec@20=0.4475
Foursquare (TKY):
Prec@10=0.4020, Prec@20=0.4664.
Where to go next: Modeling long-and short-term user preferences for point-ofinterest recommendation.(LSTPM)(Paper) Ke Sun(WHU), Tieyun Qian, Tong Chen, Yile Liang, Quoc Viet Hung Nguyen, Hongzhi Yin Code 2020 AAAI Foursquare (NY):
Rec@5=0.3372, Rec@10=0.4091.
Gowalla:
Rec@5=0.2021, Rec@10=0.2510.
An Interactive Multi-Task Learning Framework for Next POI Recommendation with Uncertain Check-ins.(iMTL)(Paper) Lu Zhang( NTU) None 2020 IJCAI Foursquare (CLT):
Rec@10=0.0534, Map4@10=0.0238.
Foursquare (CAL):
Rec@10=0.0691, Map@10=0.0443.
Foursquare (PHO):
Rec@10=0.0769, Map@10=0.0352.
A Category-Aware Deep Model for Successive POI Recommendation on Sparse Check-in Data.(CatDM)(Paper) Fuqiang Yu(SDU), Lizhen Cui, Wei Guo, Xudong Lu, Qingzhong Li, Hua Lu Code 2020 WWW Foursquare (NYC): Rec@5=0.2407, Rec@10=0.3113.
Foursquare (TKY):
Rec@5=0.2148, Rec@10=0.2739.
An attentional recurrent neural network for personalized next location recommendation.(ARNN)(Paper) Qing Guo(NTU), Zhu Sun, Jie Zhang, Yin-Leng Theng None 2020 WWW Foursquare (NY):
Acc@10=0.4162, Acc@20=0.4393
Foursquare (TK):
Acc@10=0.4285, Acc@20=0.4864
Gowalla (SF):
Acc@10=0.2336, Acc@20=0.2530.
Exploiting geographical-temporal awareness attention for next point-of-interest recommendation.(GT-HAN)(Paper) Tongcun Liu(BUPT), Jianxin Liao, Zhigen Wu, Yulong Wang, Jingyu Wang None 2020 Neurocomputing Foursquare:
AUC8=0.9661, acc@5: 0.13-0.15, acc@10: 0.17-0.19, acc@20: 0.23-0.25 (depending on latent dimensionality).
Time-Aware Location Prediction by Convolutional Area-of-Interest Modeling and Memory-Augmented Attentive LSTM.(t-LocPred)(Paper) Chi Harold Liu(BIT), Yu Wang, Chengzhe Piao, Zipeng Dai, Ye Yuan, Guoren Wang, Dapeng Wu None 2020 TKDE Gowalla:
MRR5=0.247 (C=6, all),
Weeplaces:
MRR=0.277 (C=6, all),
Brightkite:
MRR=0.388 (C=4, all).
Content-Aware Successive Point-of-Interest Recommendation.(CAPRE)(Paper) Buru Chang(KU), Yookyung Koh, Donghyeon Park, Jaewoo Kang None 2020 SDM Foursquare:
Rec@5=0.1724, Rec@10=0.2084
Instagram:
Rec@5=0.2934, Rec@10=0.3588.
Geography-Aware Sequential Location Recommendation.(GeoSAN)(Paper) Defu Lian(USTC), Yongji Wu, Yong Ge, Xing Xie, Enhong Chen Code 2020 KDD Foursquare:
Acc@5=0.3735, Acc@10=0.4867.
Gowalla:
Acc@5=0.4951, Acc@10=0.6028.
Brightkite:
Acc@5=0.5258, Acc@10=0.6425.
Modeling hierarchical category transition for next POI recommendation with uncertain check-ins.(HCT)(Paper) Lu Zhang(NTU), Zhu Sun, Jie Zhang, Horst Kloeden, Felix Klanner None 2020 Information Sciences, Elsevier Foursquare(SIN):
Prec@5=0.613 Rec@5=0.0403
Foursquare(NYC):
Prec@5=0.0585, Rec@5=0.0352
Foursquare(LA): Prec@5=0.0653, Rec@5=0.0305.
HME: A Hyperbolic Metric Embedding Approach for Next-POI Recommendation.(HME)(Paper) Shanshan Feng(Abu Dhabi, UAE), Lucas Vinh Tran, Gao Cong, Lisi Chen, Jing Li, Fan Li None 2020 SIGIR Foursquare (NYC):
Rec@5=0.0962, Rec@10=0.1371.
Foursquare (TKY):
Rec@5=0.1527, Rec@10=0.2172.
Gowalla (Houston):
Rec@5=0.1533, Rec@10=0.2318.
Location Prediction via Bi-direction Speculation and Dual-level Association.(paper) Xixi Li(WHU),Ruimin Hu, Zheng Wang,Toshihiko Yamasaki None 2021 ijcai Gowalla:
Acc@1=0.1454,
Acc@5=0.3531,
Acc@10=0.4192,
MRR=0.2431.
Foursquare:
Acc@1=0.3068,
Acc@5=0.6612,
Acc@10=0.7136,
MRR=0.4505.
SNPR A Serendipity-Oriented Next POI Recommendation Model.(SNPR)(paper) Mingwei Zhang(Northeastern University Shenyang, China),Yang Yang,Rizwan Abbas,Ke Deng,Jianxin Li,Bin Zhang None 2021 CIKM Foursquare(NewYork):
Prec@3=0.05695,
Prec@5=0.05325,
Prec@10=0.04829,
Prec@20=0.03425.
Foursquare(United Kingdom):
Prec@3=0.04346,
Prec@5=0.03842,
Prec@10=0.03651,
Prec@20=0.02502.
LightMove: A Lightweight Next-POI Recommendation forTaxicab Rooftop Advertising.(LightMove)(paper) Jinsung Jeon(Yonsei University,Seoul, South Korea),Soyoung Kang,Minju Jo, Seunghyeon Cho,Noseong Park,Seonghoon Kim,Chiyoung Song code 2021 CIKM Texi:
Hits@1=0.9988,
Hits@5=1.0000,
Hits@10=1.0000,
MRR=0.9994.
Foursquare:
Hits@1=0.1545,
Hits@5=0.3203,
Hits@10=0.3656,
MRR=0.2288.
LA:
Hits@1=0.3209,
Hits@5=0.4431,
Hits@10=0.4758,
MRR=0.0.3756.
ST-PIL: Spatial-Temporal Periodic Interest Learning for Next Point-of-Interest Recommendation.(ST-PIL) (paper) Qiang Cui(Meituan, Beijing, China), Chenrui Zhang, Yafeng Zhang, Jinpeng Wang, Mingchen Cai None 2021 CIKM NYC:
Acc@1=0.3807,
Acc@5=0.5850,
Acc@10=0.6454,
MRR@5=0.4584,
MRR@10=0.4666.
TKY:
Acc@1=0.3523,
Acc@5=0.5963,
Acc@10=0.6772,
MRR@5=0.4455,
MRR@10=0.4564.
STAN: Spatio-Temporal Attention Network for Next Location Recommendation.(STAN)(paper) Yingtao Luo(University of Washington),Qiang Liu,Zhaocheng Liu code 2021 www Gowalla:
Recall@5 =0.3016,
Recall@10=0.3998.
TKY:
Recall@5 =0.3461,
Recall@10=0.4264.
SIN:
Recall@5 =0.3751,
Recall@10=0.4301.
NYC:
Recall@5 =0.4669,
Recall@10=0.5962.
Predicting Destinations by a Deep Learning based Approach(LATL)(paper) Jiajie Xu(Soochow University),Jing Zhao,Rui Zhou,Chengfei Liu,Pengpeng Zhao,Lei Zhao None 2021 TKDE Beijing trajectory datasets:
Acc@1=0.3570,
Acc@5=0.6444,
Acc@10=0.7165,
Acc@20=0.8001.
Chengdu trajectory datasets:
Acc@1=0.3354,
Acc@5=0.5344,
Acc@10=0.6251,
Acc@20=0.7163.
PREMERE: Meta-Reweighting via Self-Ensembling for Point-of-Interest Recommendation(PREMERE)(paper) Minseok Kim(KAIST), Hwanjun Song, Doyoung Kim, Kijung Shin, Jae-Gil Lee code 2021 AAAI Gowalla:
Precision@5=0.1389.
Foursquare:
Precision@5=0.0911.
Yelp:
Precision@5=0.0545.
Discovering Collaborative Signals for Next POI Recommendation with Iterative Seq2Graph Augmentation(SGRec)(paper) Yang Li(The University of Queensland) , Tong Chen , Yadan Luo , Hongzhi Yin , Zi Huang None 2021 ijcai Foursquare:
HR@1=0.195,
HR@5=0.362,
HR@10=0.402,
HR@20=0.465.
Gowalla:
HR@1=0.067,
HR@5=0.118,
HR@10=0.137,
HR@20=0.151.
MFNP: A Meta-optimized Model for Few-shot Next POI Recommendation(MFNP)(paper) Huimin Sun(Soochow University),Jiajie Xu,Kai Zheng, Pengpeng Zhao,Pingfu Chao,Xiaofang Zhou None 2021 ijcai Foursquare:
Acc@1=0.0255,
Acc@5=0.0379,
Acc@10=0.0503.
Gowalla:
Acc@1=0.0152,
Acc@5=0.0308,
Acc@10=0.0381.
Graph-Flashback Network for Next Location Recommendation(paper) Xuan Rao(University of Electronic Science and Technology of China),Lisi Chen,Yong Liu,Shuo Shang, Bin Yao, Peng Han code 2022 KDD Gowalla:
Acc@1=0.1512,
Acc@5=0.3425,
Acc@10=0.4256,
MRR=0.2422.
Foursquare:
Acc@1=0.2805,
Acc@5=0.5757,
Acc@10=0.6514,
MRR=0.4136.
MetaPTP: An Adaptive Meta-optimized Model for Personalized Spatial Trajectory Prediction(MetaPTP)(paper) Yuan Xu(Soochow University),Jiajie Xu,Jing Zhao,Kai Zheng,An Liu,Lei Zhao None 2022 KDD Taxi trajectories in Beijing:
Acc@1=0.6186,
Acc@2=0.7864,
Acc@3=0.8578,
MRR=0.7467.
Taxi trajectories in Porto:
Acc@1=0.5310,
Acc@2=0.7233,
Acc@3=0.8176,
MRR=0.6832.
Modeling Spatio-temporal Neighbourhood for Personalized Point-of-interest Recommendation(STGCAN)(paper) Xiaolin Wang(Donghua University),Guohao Sun,Xiu Fang,Jian Yang, Shoujin Wang code 2022 ijcai NYC:
Recall@1=0.257,
Recall@5=0.544,
Recall@10=0.629.
TKY:
Recall@1=0.171,
Recall@5=0.384,
Recall@10=0.457.
Gowalla:
Recall@1=0.129,
Recall@5=0.343,
Recall@10=0.414.
Next Point-of-Interest Recommendation with Inferring Multi-step Future Preferences(CFPRec)(paper) Lu Zhang(Nanyang Technological University, Singapore),Zhu Sun,Ziqing Wu,Jie Zhang,Yew Soon Ong,Xinghua Qu code 2022 ijcai SIN:
HR@5=0.2310,
HR@10=0.3085,
NDCG@5=0.1588,
NDCG@10=0.1836.
NYC:
HR@5=0.2771,
HR@10=0.3606,
NDCG@5=0.1971,
NDCG@10=0.2190.
PHO:
HR@5=0.3421,
HR@10=0.4253,
NDCG@5=0.2432,
NDCG@10=0.2730.
Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation(NeuNext)(https://ieeexplore.ieee.org/document/9133505) Pengpeng Zhao( Soochow University),Anjing Luo,Yanchi Liu,Jiajie Xu,Zhixu Li,Fuzhen Zhuang None 2022 TKDE Foursquare(CA):
Acc@1=0.0890,
Acc@5=0.1421,
Acc@10=0.1748,
MAP=0.2736.
Foursquare(SIN):
Acc@1=0.2284,
Acc@5=0.2768,
Acc@10=0.3022,
MAP=0.3704.
Gowalla:
Acc@1=0.0930,
Acc@5=0.1689,
Acc@10=0.2034,
MAP=0.2685.
Brightkite:
Acc@1=0.4567,
Acc@5=0.5109,
Acc@10=0.5422,
MAP=0.5683.
Personalized Long- and Short-term Preference Learning for Next POI Recommendation(PLSPL)(paper) Yuxia Wu(Xi’an Jiaotong University),KeLI,Guoshuai Zhao,Xueming Qian None 2022 TKDE Foursquare(NYC):
Recall@1=0.1559,
Recall@5=0.3252,
Recall@10=0.3953,
Recall@20=0.4475,
MAP@5=0.2172,
MAP@10=0.2266,
MAP@20=0.2302.
Foursquare(TKY):
Recall@1=0.1571,
Recall@5=0.3321,
Recall@10=0.4020,
Recall@20=0.4664,
MAP@5=0.2212,
MAP@10=0.2307,
MAP@20=0.2352.
Time-Aware Location Prediction by Convolutional Area-of-Interest Modeling and Memory-Augmented Attentive LSTM(t-LocPred)(paper) Chi Harold Liu(Beijing Institute of Technology),Yu Wang,Chengzhe Piao,Zipeng Dai, Ye Yuan,Guoren Wang, and Dapeng Wu None 2022 TKDE Weeplaces:
Acc@1=0.277.
Gowalla:
Acc@1=0.247.
Brightkite:
Acc@1=0.380.
SPATM: A Social Period-Aware T opic Model for Personalized Venue Recommendation(SPATM)(paper) Weiyu Ji(Beijing University of Posts and Tele-communications),Xiangwu Meng,Yujie Zhang None 2022 TKDE Foursquare:
Recall@1=0.0683,
Recall@5=0.157,
Recall@10=0.222,
Recall@15=0.273,
NDCG@1=0.0683,
NDCG@5=0.0374,
NDCG@10=0.0297,
NDCG@15=0.0255.
Yelp:
Recall@1=0.0243,
Recall@5=0.0918,
Recall@10=0.161,
Recall@15=0.2432,
NDCG@1=0.0243,
NDCG@5=0.0196,
NDCG@10=0.0173,
NDCG@15=0.0168.
Learning Graph-based Disentangled Representations for Next POI Recommendation(DRAN)(paper) Zhaobo Wang(Shanghai Jiao Tong University),Yanmin Zhu∗,Haobing Liu,Chunyang Wang None 2022 sigir Foursquare:
Recall@2=0.3551,
Recall@5=0.4092,
Recall@10=0.4512.
Gowalla:
Recall@2=0.2288,
Recall@5=0.2832,
Recall@10=0.3291.
GETNext: Trajectory Flow Map Enhanced Transformer for Next POI Recommendation(GETNext)(paper) Song Yang(The University of Auckland),Jiamou Liu,Kaiqi Zhao code 2022 sigir FourSquare(NYC):
Acc@1=0.2435,
Acc@5=0.5089,
Acc@10=0.6143,
Acc@20=0.6880,
MRR=0.3621.
FourSquare(TKY):
Acc@1=0.2254,
Acc@5=0.4417,
Acc@10=0.5287,
Acc@20=0.5829,
MRR=0.3262.
Gowalla(CA):
Acc@1=0.1357,
Acc@5=0.2852,
Acc@10=0.3590,
Acc@20=0.4241,
MRR=0.2103.
Empowering Next POI Recommendation with Multi-Relational Modeling(MEMO)(paper) Zheng Huang(University of Virginia), Jing Ma,Yushun Dong,Natasha Zhang Foutz,Jundong Li None 2022 sigir Baltimore July:
Recall@10=0.891,
MRR@10=0.446.
DC July:
Recall@10=0.831,
MRR@10=0.380.
DC August:
Recall@10=0.840,
MRR@10=0.435.
Next Point-of-Interest Recommendation with Auto-Correlation Enhanced Multi-Modal Transformer Network(paper) Yanjun Qin(Beijing University of Posts and Telecommunications),Yuchen Fang,Haiyong Luo, Fang Zhao,Chenxing Wang None 2022 sigir NYC:
Acc@5=0.4370,
Acc@10=0.5289,
MRR@5=0.2742,
MRR@10=0.2867.
TKY:
Acc@5=0.3802,
Acc@10=0.4687,
MRR@5=0.2434,
MRR@10=0.2553
Predicting Human Mobility via Graph Convolutional Dual-attentive Networks(GCDAN)(paper) Weizhen Dang(Tsinghua University),Haibo Wang, Shirui Pan,Pei Zhang, Chuan Zhou,Xin Chen,Jilong Wang code 2022 wsdm Gowalla:
Acc@1=0.1377,
Acc@5=0.3086,
Acc@10=0.3780.
Foursquare:
Acc@1=0.1613,
Acc@5=0.3417,
Acc@10=0.4093.
WiFi-Trace:
Acc@1=0.5912,
Acc@5=0.8064,
Acc@10=0.8726.
RLMob: Deep Reinforcement Learning for Successive Mobility Prediction(RLMob)(paper) Ziyan Luo(McGill University),Congcong Miao code 2022 wsdm Foursquare(TKY):
Acc@1=0.4150.
Foursquare(NYK):
Acc@1=0.4401.
Univ-WIFI:
Acc@1=0.2291.
Hierarchical Multi-Task Graph Recurrent Network for Next POI Recommendation(paper) Nicholas Lim(GrabTaxi Holdings),Bryan Hooi,See-Kiong Ng,Yong Liang Goh,Renrong Weng,Rui Tan. code 2022 sigir Gowalla:
Acc@1=0.1455,
Acc@5=0.2783,
Acc@10=0.3394,
Acc@20=0.4033.
Foursquare:
Acc@1=0.1673,
Acc@5=0.3357,
Acc@10=0.4148,
Acc@20=0.4983.

About

This is a list of useful information about urban mobility prediction. Related papers, datasets and codes are included.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •