Skip to content

A simpler way of preparing large-scale image dataset by generalizing functions from TensorFlow-slim

License

Notifications You must be signed in to change notification settings

upvenly/create_tfrecords

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

create_tfrecords

A simpler way of preparing large-scale image dataset by generalizing functions from TensorFlow-slim.

Requirements

  1. Python 2.7.x
  2. TensorFlow >= 0.12

NOTE: If you want to run this program on Python 3, clone and run git checkout python-3.0 for the Python 3 branch instead.

Usage

$python create_tfrecord.py --dataset_dir=/path/to/dataset/ --tfrecord_filename=dataset_name

#Example: python create_tfrecord.py --dataset_dir=/path/to/flowers --tfrecord_filename=flowers
#Note that the dataset_dir should be the folder that contains the root directory and not the root directory itself.

Arguments

Required arguments:

  • dataset_dir (string): The directory to your dataset that is arranged in a structured way where your subdirectories keep classes of your images.

For example:

flowers\
    flower_photos\
        tulips\
            ....jpg
            ....jpg
            ....jpg
        sunflowers\
            ....jpg
        roses\
            ....jpg
        dandelion\
            ....jpg
        daisy\
            ....jpg

  Note: Your dataset_dir should be /path/to/flowers and not /path/to/flowers/flowers_photos

  • tfrecord_filename (string): The output name of your TFRecord files.

Optional Arguments

  • validation_size (float): The proportion of the dataset to be used for evaluation.

  • num_shards (int): The number of shards to split your TFRecord files into.

  • random_seed (int): The random seed number for repeatability.

Complete Guide

For a complete guide, please visit here.

About

A simpler way of preparing large-scale image dataset by generalizing functions from TensorFlow-slim

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%