Skip to content

Active learning for optimal intervention design in causal models

License

Notifications You must be signed in to change notification settings

uhlerlab/actlearn_optint

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Active Learning for Optimal Interventions

Code for paper: Active learning for optimal intervention design in causal models (Nature Machine Intelligence, 2023)

arXiv link: https://arxiv.org/abs/2209.04744

Installation

Follow the two steps illustrated below

  1. create a conda environment using environment.yaml (all dependencies are included; whole process takes about 5 min):
conda env create -f environment.yml
  1. install the current package in editable mode inside the conda environment:
pip install -e .

Examples on synthetic data

Run on a synthetic instance, e.g.:

python run.py --nnodes 5 --noise_level 1 --DAG_type path --std --a_size 2 --a_target 3 4 --acquisition greedy

Source code folder: ./optint/

More examples given in: ./optint/notebook/test_multigraphs.ipynb

Examples on Perturb-CITE-Seq [1]

Source code folder: ./perturb-CITE-seq

Notebooks for exploratory data analysis: ./perturb-CITE-seq/preprocess

  • download and extract data: ./perturb-CITE-seq/preprocess/screen_sanity_checks.ipynb
  • process data: ./perturb-CITE-seq/preprocess/process_data.ipynb

Notebook for running the optimal intervention design task: ./perturb-CITE-seq/test.ipynb

Figures in the paper

Illustraive figures: made using mac keynotes

Pointers for nonillustrative figures:

  • ./optint/notebook/test_ow.ipynb: Fig. 3, Supplementary Fig. 2
  • ./optint/notebook/test_convergence.ipynb: Fig. 4
  • ./optint/notebook/test_multigraphs.ipynb: Fig. 5, Supplementary Fig. 4-7
  • ./optint/notebook/test_moreacq.ipynb: Supplementary Fig. 8
  • ./optint/notebook/test_misspecgraphs.ipynb: Supplementary Fig. 10
  • ./perturb-CITE-seq/preprocess/screen_sanity_checks.ipynb: Supplementary Fig. 11, 13, 14A
  • ./perturb-CITE-seq/preprocess/process_data.ipynb: Supplementary Fig. 12
  • ./perturb-CITE-seq/preprocess/test_linearity.ipynb: Supplementary Fig. 14C
  • ./perturb-CITE-seq/test.ipynb: Fig. 6, Supplementary Fig. 15-18

About

Active learning for optimal intervention design in causal models

Resources

License

Stars

Watchers

Forks

Packages

No packages published