Skip to content

uanushkatkd/CS6910_Assignment3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 

Repository files navigation

CS6910_Assignment_3

Wandb Report Link:

https://wandb.ai/cs22s015/CS6910_Assignment3/reports/Assignment-3--Vmlldzo0NDE3Nzg0

Vanilla Seq2Seq:

To run the code:

  • Usage
usage: Dl3_Vanilla_Seq2Seq.py
       [-h]
       [-wp WANDB_PROJECT]
       [-we WANDB_ENTITY]
       [-ct CELL_TYPE]
       [-b BATCH_SIZE]
       [-o OPTIMIZER]
       [-lr LEARNING_RATE]
       [-em EMBEDDING_SIZE]
       [-hs HIDDEN_SIZE]
       [-dp DROPOUT]
       [-nl NUM_LAYERS]
       [-bidir BIDIRECTIONAL]
       [-tf TEACHER_FORCING]

  • To run code in cloab :
    • first Load dataset using :
    !wget 'https://drive.google.com/uc?export=download&id=1uRKU4as2NlS9i8sdLRS1e326vQRdhvfw' -O dataset.zip && unzip -q dataset.zip
    
    
    • After loading the dataset and mounting the .py file in colab run:
    !python3 "/content/drive/My Drive/Colab Notebooks/Dl3_Vanilla_Seq2Seq.py"
    
  • This will run code for some default parameters. To generate the best result refer the below configuration:
sweep_config= {
   'parameters' : {
       'cell_type' : { 'values' : ['gru'] },
       'dropout' : { 'values' : [0.1]},
       'embedding_size' : {'values' : [512]},
       'num_layers' : {'values' : [3]},
       'batch_size' : {'values' : [128]},
       'hidden_size' : {'values' : [512]},
       'bidirectional' : {'values' : [False]},
       'learning_rate':{"values": [0.0002]},
       'optim':{"values": ['adam']},
      'teacher_forcing':{"values":[0.7]}
   }
}

Attention Seq2Seq:

To run the code:

  • Usage
usage: Dl3_Attn_Seq2Seq.py
       [-h]
       [-wp WANDB_PROJECT]
       [-we WANDB_ENTITY]
       [-ct CELL_TYPE]
       [-b BATCH_SIZE]
       [-o OPTIMIZER]
       [-lr LEARNING_RATE]
       [-em EMBEDDING_SIZE]
       [-hs HIDDEN_SIZE]
       [-dp DROPOUT]
       [-nl NUM_LAYERS]
       [-bidir BIDIRECTIONAL]
       [-tf TEACHER_FORCING]

  • To run code in cloab :
    • first Load dataset using :
    !wget 'https://drive.google.com/uc?export=download&id=1uRKU4as2NlS9i8sdLRS1e326vQRdhvfw' -O dataset.zip && unzip -q dataset.zip
    
    
    • After loading the dataset and mounting the .py file in colab run:
    !python3 "/content/drive/My Drive/Colab Notebooks/Dl3_Attn_Seq2Seq.py" 
    
  • This will run code for some default parameters. To generate the best result refer the below configuration:
sweep_config= {
    'parameters' : {
        'cell_type' : { 'values' : ['lstm'] },
        'dropout' : { 'values' : [0.2]},
        'embedding_size' : {'values' : [256]},
        'num_layers' : {'values' : [1]},
        'batch_size' : {'values' : [32]},
        'hidden_size' : {'values' : [512]},
        'bidirectional' : {'values' : [False]},
        'learning_rate':{"values": [0.001]},
        'optim':{"values": ['nadam']},
       'teacher_forcing':{"values":[0.1]}
    }
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published