https://wandb.ai/cs22s015/CS6910_Assignment_2_Q2/reports/CS6910-Assignment-2--Vmlldzo0MDIxMDE2
- Usage
cs6910_dl_2_partA.py
[-h]
[-wp WANDB_PROJECT]
[-we WANDB_ENTITY]
[-e EPOCHS]
[-b BATCH_SIZE]
[-o OPTIMIZER]
[-lr LEARNING_RATE]
[-a ACTIVATION]
[-fm FILTER_MULTIPLIER]
[-dp DROPOUT]
[-fc DENSE_NEURONS]
[-nf NO_FILTERS]
[-bn BATCH_NORMALIZATION]
[-da DATA_AUGMENTATION]
-ks
KERNEL_SIZE
[KERNEL_SIZE ...]
- To run code in cloab :
- first Load dataset using :
!wget 'https://storage.googleapis.com/wandb_datasets/nature_12K.zip' !unzip -q nature_12K.zip
- After loading the dataset and mounting the .py file in colab run:
!python3 "/content/drive/My Drive/Colab Notebooks/cs6910_dl_2_partA.py" -ks 3 3 3 3 3 ```
- This will run code for default parameters:
'batch_norm': false
'batch_size': 64
'data_aug':true
'dropout': 0
'fc_neurons':128
'filter_multiplier': 2
'kernel_sizes':[3,3,3,3,3]
'learning_rate': 0.0005
'num_filters':16
'optimizer': 'nadam'
- To run code in cloab :
- first Load dataset using :
!wget 'https://storage.googleapis.com/wandb_datasets/nature_12K.zip' !unzip -q nature_12K.zip
- After loading the dataset and mounting the .py file in colab run:
!python3 "/content/drive/My Drive/Colab Notebooks/cs6910_dl_2_partB.py"