-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- huggingface의 peft 적용을 위해 tensorflow에서 pytorch로 변경
- Loading branch information
Showing
1 changed file
with
180 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.utils.data import DataLoader, TensorDataset, random_split | ||
from sklearn.preprocessing import MinMaxScaler | ||
from sklearn.metrics import accuracy_score | ||
from LocationAnalyzer import LocationAnalyzer | ||
|
||
class ForecastLSTMClassification(nn.Module): | ||
def __init__(self, class_num: int, input_dim: int, hidden_dim: int, layer_dim: int, output_dim: int, dropout_prob: float = 0.2): | ||
super(ForecastLSTMClassification, self).__init__() | ||
self.hidden_dim = hidden_dim | ||
self.layer_dim = layer_dim | ||
|
||
self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True, dropout=dropout_prob) | ||
self.fc = nn.Linear(hidden_dim, output_dim) | ||
self.softmax = nn.Softmax(dim=1) | ||
|
||
def forward(self, x): | ||
h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device) | ||
c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).to(x.device) | ||
|
||
out, _ = self.lstm(x, (h0, c0)) | ||
out = self.fc(out[:, -1, :]) | ||
out = self.softmax(out) | ||
return out | ||
|
||
class LSTMModel: | ||
def __init__(self, class_num: int, random_seed: int = 1234): | ||
self.random_seed = random_seed | ||
self.class_num = class_num | ||
torch.manual_seed(random_seed) | ||
np.random.seed(random_seed) | ||
|
||
def reshape_dataset(self, df: pd.DataFrame) -> np.array: | ||
dataset = df.values.reshape(df.shape) | ||
return dataset | ||
|
||
def split_sequences(self, dataset: np.array, seq_len: int, steps: int, single_output: bool) -> tuple: | ||
X, y = [], [] | ||
for i in range(len(dataset) - seq_len - steps + 1): | ||
idx_in = i + seq_len | ||
idx_out = idx_in + steps | ||
|
||
if idx_out > len(dataset): | ||
break | ||
|
||
seq_x = dataset[i:idx_in, :-1] | ||
seq_y = dataset[idx_in:idx_out, -1] | ||
|
||
X.append(seq_x) | ||
y.append(seq_y[0] if single_output else seq_y) | ||
|
||
X = np.array(X) | ||
y = np.array(y) | ||
return X, y | ||
|
||
def split_train_valid_dataset(self, df: pd.DataFrame, seq_len: int, steps: int, single_output: bool, validation_split: float = 0.2) -> tuple: | ||
dataset = self.reshape_dataset(df=df) | ||
X, y = self.split_sequences(dataset=dataset, seq_len=seq_len, steps=steps, single_output=single_output) | ||
|
||
dataset_size = len(X) | ||
train_size = int(dataset_size * (1-validation_split)) | ||
valid_size = dataset_size - train_size | ||
|
||
X_train, y_train = torch.tensor(X[:train_size, :], dtype=torch.float32), torch.tensor(y[:train_size], dtype=torch.long) | ||
X_val, y_val = torch.tensor(X[train_size:, :], dtype=torch.float32), torch.tensor(y[train_size:], dtype=torch.long) | ||
|
||
train_dataset = TensorDataset(X_train, y_train) | ||
val_dataset = TensorDataset(X_val, y_val) | ||
|
||
return train_dataset, val_dataset | ||
|
||
def build_and_compile_lstm_model(self, seq_len: int, n_features: int, hidden_dim: int, layer_dim: int, dropout_prob: float = 0.2, learning_rate: float = 0.001): | ||
model = ForecastLSTMClassification(self.class_num, n_features, hidden_dim, layer_dim, self.class_num, dropout_prob) | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.Adam(model.parameters(), lr=learning_rate) | ||
return model, criterion, optimizer | ||
|
||
def fit_lstm(self, df: pd.DataFrame, steps: int, hidden_dim: int, layer_dim: int, dropout_prob: float, seq_len: int, single_output: bool, epochs: int, batch_size: int, validation_split: float, learning_rate: float): | ||
train_dataset, val_dataset = self.split_train_valid_dataset(df=df, seq_len=seq_len, steps=steps, single_output=single_output, validation_split=validation_split) | ||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) | ||
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False) | ||
|
||
model, criterion, optimizer = self.build_and_compile_lstm_model(seq_len=seq_len, n_features=train_dataset[0][0].shape[1], hidden_dim=hidden_dim, layer_dim=layer_dim, dropout_prob=dropout_prob, learning_rate=learning_rate) | ||
|
||
model.train() | ||
for epoch in range(epochs): | ||
for X_batch, y_batch in train_loader: | ||
optimizer.zero_grad() | ||
outputs = model(X_batch) | ||
loss = criterion(outputs, y_batch.view(-1)) | ||
loss.backward() | ||
optimizer.step() | ||
print(f'Epoch {epoch+1}/{epochs}, Loss: {loss.item()}') | ||
|
||
return model | ||
|
||
def forecast_validation_dataset(self, model, val_loader): | ||
model.eval() | ||
y_pred_list, y_val_list = [], [] | ||
|
||
with torch.no_grad(): | ||
for X_batch, y_batch in val_loader: | ||
outputs = model(X_batch) | ||
_, predicted = torch.max(outputs.data, 1) | ||
y_pred_list.extend(predicted.tolist()) | ||
y_val_list.extend(y_batch.tolist()) | ||
return pd.DataFrame({"y": y_val_list, "yhat": y_pred_list}) | ||
|
||
def pred(self, df: pd.DataFrame, model, steps: int, seq_len: int, single_output: bool, batch_size: int): | ||
dataset = self.reshape_dataset(df=df) | ||
X_test, y_test = self.split_sequences(dataset=dataset, seq_len=seq_len, steps=steps, single_output=single_output) | ||
|
||
X_test_tensor = torch.tensor(X_test, dtype=torch.float32) | ||
y_test_tensor = torch.tensor(y_test, dtype=torch.long) | ||
|
||
test_loader = DataLoader(TensorDataset(X_test_tensor, y_test_tensor), batch_size=batch_size, shuffle=False) | ||
|
||
model.eval() | ||
y_pred_list = [] | ||
y_test_list = [] | ||
|
||
with torch.no_grad(): | ||
for X_batch, y_batch in test_loader: | ||
outputs = model(X_batch) | ||
_, predicted = torch.max(outputs.data, 1) | ||
y_pred_list.extend(predicted.tolist()) | ||
y_test_list.extend(y_batch.tolist()) | ||
|
||
y_pred = np.array(y_pred_list) | ||
y_test = np.array(y_test_list) | ||
accuracy = accuracy_score(y_test, y_pred) | ||
return y_pred, accuracy | ||
|
||
if __name__ == '__main__': | ||
la = LocationAnalyzer(r"C:\Users\sk002\Downloads\138362.csv") | ||
df, meaningful_df = la.run_analysis() | ||
|
||
test_idx = int(len(df) * 0.8) | ||
df_train = df.iloc[:test_idx] | ||
df_test = df.iloc[test_idx:] | ||
|
||
# 파라미터 설정 | ||
seq_len = 30 | ||
steps = 30 | ||
single_output = True | ||
lstm_params = { | ||
"seq_len": seq_len, | ||
"epochs": 30, | ||
"patience": 30, | ||
"learning_rate": 0.03, | ||
"hidden_dim": 64, | ||
"layer_dim": 2, | ||
"dropout_prob": 0, | ||
"batch_size": 32, | ||
"validation_split": 0.3, | ||
} | ||
|
||
lstm_model = LSTMModel(class_num=len(df['y'].unique())) | ||
trained_model = lstm_model.fit_lstm( | ||
df=df_train, | ||
steps=steps, | ||
hidden_dim=lstm_params["hidden_dim"], | ||
layer_dim=lstm_params["layer_dim"], | ||
dropout_prob=lstm_params["dropout_prob"], | ||
seq_len=seq_len, | ||
single_output=single_output, | ||
epochs=lstm_params["epochs"], | ||
batch_size=lstm_params["batch_size"], | ||
validation_split=lstm_params["validation_split"], | ||
learning_rate=lstm_params["learning_rate"] | ||
) | ||
|
||
y_pred, acc = lstm_model.pred(df=df_test, model=trained_model, steps=steps, seq_len=seq_len, single_output=single_output, batch_size=lstm_params["batch_size"]) | ||
|
||
print(y_pred) | ||
print(f"acc : {acc}") |