-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix: caluclation of entry/exit points for starting/stopping events
- Loading branch information
Showing
2 changed files
with
142 additions
and
59 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
182 changes: 123 additions & 59 deletions
182
resources/examples/standalone/plot_entry_exit_closest_approach.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,63 +1,127 @@ | ||
import numpy as np | ||
from matplotlib import pyplot as plt | ||
from matplotlib import gridspec | ||
import pyPROPOSAL as pp | ||
|
||
prop = pp.Propagator( | ||
particle_def=pp.particle.MuMinusDef.get(), | ||
config_file="resources/config.json" | ||
) | ||
|
||
mu = prop.particle | ||
start_position = pp.Vector3D(1e5, 0, 1e2) | ||
mu.position = start_position | ||
direction = pp.Vector3D(-1, 0, 0) | ||
direction.spherical_from_cartesian() | ||
mu.direction = direction | ||
start_energy = 1e9 | ||
mu.energy = start_energy | ||
mu.propagated_distance = 0 | ||
mu.time = 0 | ||
|
||
secondarys = prop.propagate() | ||
|
||
nsecs = len(secondarys) -3 | ||
secs_dists = np.empty(nsecs) | ||
secs_enrgy = np.empty(nsecs) | ||
mu_energies = np.empty(nsecs) | ||
secs_ids = np.empty(nsecs) | ||
|
||
for idx in range(nsecs): | ||
secs_dists[idx] = (start_position - secondarys[idx].position).magnitude() | ||
secs_enrgy[idx] = secondarys[idx].energy | ||
mu_energies[idx] = secondarys[idx].parent_particle_energy | ||
if secondarys[idx].id == pp.particle.Data.Epair: | ||
secs_ids[idx] = 0 | ||
elif secondarys[idx].id == pp.particle.Data.Brems: | ||
secs_ids[idx] = 1 | ||
elif secondarys[idx].id == pp.particle.Data.DeltaE: | ||
secs_ids[idx] = 2 | ||
elif secondarys[idx].id == pp.particle.Data.NuclInt: | ||
secs_ids[idx] = 3 | ||
|
||
print(mu) | ||
dist_start_detector = (prop.detector.position - start_position).magnitude() | ||
|
||
fig = plt.figure() | ||
ax = fig.add_subplot(111) | ||
|
||
ax.plot(secs_dists[secs_ids == 0], secs_enrgy[secs_ids == 0]/1e3, 'b.', label='EPair') | ||
ax.plot(secs_dists[secs_ids == 1], secs_enrgy[secs_ids == 1]/1e3, 'r.', label='Brems') | ||
ax.plot(secs_dists[secs_ids == 2], secs_enrgy[secs_ids == 2]/1e3, 'm.', label='Ioniz') | ||
ax.plot(secs_dists[secs_ids == 3], secs_enrgy[secs_ids == 3]/1e3, 'g.', label='NuclI') | ||
ax.plot(secs_dists, mu_energies/1e3) | ||
ax.axhline(0.5, color='r', label='ecut') | ||
|
||
ax.axvline((start_position - mu.entry_point).magnitude(), color='k', ls='-', label='detector') | ||
ax.axvline((start_position - mu.closet_approach_point).magnitude(), color='k', ls='--', label='closest approach') | ||
ax.axvline((start_position - mu.exit_point).magnitude(), color='k', ls='-') | ||
ax.set_yscale('log') | ||
ax.set_ylim([0.1, start_energy/1e3]) | ||
ax.set_ylabel('Energy / GeV') | ||
ax.set_xlabel('Distance / cm') | ||
ax.legend() | ||
plt.show() | ||
def propagate_particle(propagator, | ||
position=[-1e5, 0, 1e4], | ||
direction=[1, 0, 0], | ||
energy=1e9): | ||
propagator.particle.position = pp.Vector3D(position[0], | ||
position[1], | ||
position[2]) | ||
tmp_dir = pp.Vector3D(direction[0], | ||
direction[1], | ||
direction[2]) | ||
tmp_dir.spherical_from_cartesian() | ||
propagator.particle.direction = tmp_dir | ||
|
||
propagator.particle.energy = energy | ||
propagator.particle.propagated_distance = 0 | ||
propagator.particle.time = 0 | ||
|
||
return propagator.propagate() | ||
|
||
|
||
def main(): | ||
prop = pp.Propagator( | ||
particle_def=pp.particle.MuMinusDef.get(), | ||
config_file="resources/config.json" | ||
) | ||
|
||
fig = plt.figure(figsize=(10,10)) | ||
gs = gridspec.GridSpec(3, 1) | ||
ax1 = fig.add_subplot(gs[:-1]) | ||
ax = fig.add_subplot(gs[-1], sharex=ax1) | ||
# ax1 = fig.add_subplot(111) | ||
|
||
ax1.plot(np.array([-prop.detector.radius, | ||
prop.detector.radius, | ||
prop.detector.radius, | ||
-prop.detector.radius, | ||
-prop.detector.radius]), | ||
np.array([-prop.detector.height, | ||
-prop.detector.height, | ||
prop.detector.height, | ||
prop.detector.height, | ||
-prop.detector.height])/2, | ||
color='k', label='detector') | ||
|
||
ax1.set_xlabel('x coord. / cm') | ||
ax1.set_ylabel('z coord. / cm') | ||
ax1.set_xlim([-1e5, 1e5]) | ||
|
||
labels = ['EPair', 'Brems', 'Ioniz', 'NuclInt'] | ||
|
||
start_positions = [[-1e5,0,1e4], | ||
[-1e5,0,2e4], | ||
[-3e4,0,3e4], | ||
[1e4,0,4e4],] | ||
start_energies = [1e9, 3e5, 1e5, 1e5] | ||
|
||
for jdx in range(4): | ||
secondarys = propagate_particle(prop, | ||
position=start_positions[jdx], | ||
direction=[1, 0, 0], | ||
energy=start_energies[jdx]) | ||
|
||
print(prop.particle) | ||
nsecs = len(secondarys) - 2 # to get rid of the decay | ||
positions = np.empty((nsecs, 3)) | ||
secs_enrgy = np.empty(nsecs) | ||
mu_energies = np.empty(nsecs) | ||
secs_ids = np.empty(nsecs) | ||
|
||
for idx in range(nsecs): | ||
positions[idx] = np.array([secondarys[idx].position.x, | ||
secondarys[idx].position.y, | ||
secondarys[idx].position.z]) | ||
secs_enrgy[idx] = secondarys[idx].energy | ||
mu_energies[idx] = secondarys[idx].parent_particle_energy | ||
if secondarys[idx].id == pp.particle.Data.Epair: | ||
secs_ids[idx] = 0 | ||
elif secondarys[idx].id == pp.particle.Data.Brems: | ||
secs_ids[idx] = 1 | ||
elif secondarys[idx].id == pp.particle.Data.DeltaE: | ||
secs_ids[idx] = 2 | ||
elif secondarys[idx].id == pp.particle.Data.NuclInt: | ||
secs_ids[idx] = 3 | ||
|
||
for idx in range(4): | ||
ax.plot(positions[:,0][secs_ids == idx], | ||
secs_enrgy[secs_ids == idx]/1e3, | ||
ls='None', | ||
marker='.', | ||
label=labels[idx]) | ||
ax.plot(positions[:,0], mu_energies/1e3, label=r'$E_{\mu}$') | ||
ax.axhline(0.5, color='r', label='ecut') | ||
ax.axvline(prop.particle.entry_point.x, color='g', ls='-', label='entry/exit') | ||
ax.axvline(prop.particle.exit_point.x, color='g', ls='-') | ||
ax.axvline(prop.particle.closet_approach_point.x, color='b', ls='dotted', label='closest approach') | ||
ax.set_yscale('log') | ||
ax.set_ylabel('Energy / GeV') | ||
ax.set_xlabel('x coord. / cm') | ||
# ax.legend() | ||
|
||
plt.subplots_adjust(hspace=.0) | ||
plt.setp(ax1.get_xticklabels(), visible=False) | ||
|
||
ax1.plot(positions[:,0], positions[:,2], label='muon {}'.format(jdx)) | ||
ax1.plot([prop.particle.entry_point.x, prop.particle.exit_point.x], | ||
[prop.particle.entry_point.z, prop.particle.exit_point.z], | ||
ls='None', marker='x', label='entry/exit {}'.format(jdx)) | ||
ax1.plot(prop.particle.closet_approach_point.x, | ||
prop.particle.closet_approach_point.z, | ||
ls='None', marker='x', label='closet approach {}'.format(jdx)) | ||
ax1.plot([prop.particle.entry_point.x, prop.particle.closet_approach_point.x, prop.particle.exit_point.x], | ||
[prop.particle.entry_point.z, prop.particle.closet_approach_point.z, prop.particle.exit_point.z], | ||
ls='dotted', label='approx line {}'.format(jdx)) | ||
|
||
ax1.legend() | ||
|
||
fig.savefig('entry_exit_points.png') | ||
|
||
plt.show() | ||
|
||
if __name__ == '__main__': | ||
main() |