Skip to content

tinyheero/survutils

Repository files navigation

survutils

CRAN_Status_Badge Travis-CI Build Status Downloads per month Total downloads Anaconda-Server Badge Say Thanks!

This package uses functional programming principles to iteratively run Cox regression and plot its results. The results are reported in tidy data frames. Additional utility functions are available for working with other aspects of survival analysis such as survival curves, C-statistics, etc. It has the following features (grouped by major topics):

Cox Regression

  • get_cox_res: Run univariate or multivariate cox regression.
  • iter_get_cox_res: Wrapper over get_cox_res to faciliate ease of multiple get_cox_res runs. Internally, this makes use of purrr:map to iterate over a list of features.
  • plot_cox_res: Generates a forest plot of the univariate or multivariate cox regression results from get_cox_res.

Kaplan Meier Estimates/Curves

  • get_surv_prob: Calculates the survival probability at specified times from a survival curve.
  • get_nrisk_tbl: Provides a number at risk table as typically seen in publications.
  • get_logrank_res: Runs a log-rank test.

Other

  • get_c_stat: Calculate C-statistics.

How to Install

To get the released version from CRAN:

install.packages("survutils")

You can also get survutils through conda:

conda install -c fongchun r-survutils

To install the latest developmental version from github:

devtools::install_github("tinyheero/survutils")

Cox Regression

survutils provides a nice wrapper function get_cox_res that allows you to quickly run an univariate or multivariate cox regression on a set of data. The input data is a data.frame for instance (taking the colon dataset from the survival R package as the example):

library("survival")
library("knitr")
library("survutils")
library("dplyr")

head(colon) %>%
    select(age, obstruct, time, status, rx) %>%
    kable()
age obstruct time status rx
43 0 1521 1 Lev+5FU
43 0 968 1 Lev+5FU
63 0 3087 0 Lev+5FU
63 0 3087 0 Lev+5FU
71 0 963 1 Obs
71 0 542 1 Obs

The relevant columns are:

  • age and obstruct: These are the features we want to regress on.
  • time: Time to event.
  • status: Event status (1 for event; 0 for non-event).
  • rx: Different treatment groups.

Then to run get_cox_res:

endpoint <- "time"
endpoint.code <- "status"
 
features <- c("age", "obstruct")
cox.res.df <- get_cox_res(colon, endpoint, endpoint.code, features)
#> Detected multiple features. Running multivariate cox regression
kable(cox.res.df)
term estimate std.error statistic p.value conf.low conf.high test_type
age 0.9983432 0.0028040 -0.5913434 0.5542904 0.9928717 1.003845 multicox
obstruct 1.2677379 0.0808045 2.9359039 0.0033258 1.0820531 1.485287 multicox

This runs a multivariate cox regression on the entire set of data. We can plot the results using plot_cox_res:

plot_cox_res(cox.res.df)
#> Adding significance line

This gives us a forest plot with the hazard ratio and confidence evidence for each feature. If we are interested in running cox regression within each treatment group, we can make use of the group parameter.

group <- "rx"
cox.res.df <- get_cox_res(colon, endpoint, endpoint.code, features, group)
#> Detected multiple features. Running multivariate cox regression
kable(cox.res.df)
group term estimate std.error statistic p.value conf.low conf.high test_type
Obs age 1.0026174 0.0046032 0.5678581 0.5701313 0.9936124 1.0117040 multicox
Obs obstruct 1.2123725 0.1319705 1.4592591 0.1444938 0.9360576 1.5702528 multicox
Lev age 1.0042268 0.0048754 0.8651343 0.3869651 0.9946764 1.0138689 multicox
Lev obstruct 1.4151910 0.1293943 2.6837694 0.0072797 1.0981822 1.8237097 multicox
Lev+5FU age 0.9869403 0.0051866 -2.5345800 0.0112582 0.9769584 0.9970242 multicox
Lev+5FU obstruct 1.0844978 0.1677669 0.4835103 0.6287334 0.7805940 1.5067186 multicox

Notice how the output data.frame now has cox regression results for each treatment group (i.e. Obs, Lev, Lev+5FU). We can use the plot_cox_res function again and pass in a facet.formula to plot these results very easily:

plot_cox_res(cox.res.df,
             facet.formula = ". ~ group")
#> Adding significance line

This will facet the groups (per column) so that we can visualize the cox regression results for each treatment group. The formula is the format for ggplot2::facet_grid with the full documentation listed here. In short, the left hand side of the formula indicates what you want to facet by row. The right hand side of the formula indicates what you want to facet by column. By specifically . ~ group, we are indicating we do not want to facet by row (this is indicated by the .) and we want to facet the group variable by column.

We could have facetted by row too very easily:

plot_cox_res(cox.res.df,
             facet.formula = "group ~ .")
#> Adding significance line

There are also other options (see ?plot_cox_res for full options) such as the ability to add colors:

cox.res.df %>%
  mutate(sig_flag = p.value < 0.05) %>%
  plot_cox_res(facet.formula = ". ~ group", color.col = "sig_flag")

Running Cox Regression Multiple Times

One useful function is the iter_get_cox_res which allows you to easily run the get_cox_res function multiple times without needing to setup a for loop yourself. This is useful in situations where you might need to perform multiple pairwise multivariate Cox regression analysis to test the independence of a novel prognostic biomarker to existing biomarkers.

The input to the iter_get_cox_res function is the same as get_cox_res with the only exception being the features parameter which takes a list of vectors. Each element in the list indicates the features you want to perform Cox regression on:

features <- list(c("age", "obstruct"),
                 c("age"))

iter_get_cox_res.df <- 
  iter_get_cox_res(colon, endpoint, endpoint.code, features)
#> Detected multiple features. Running multivariate cox regression
#> Detected only one feature. Running univariate cox regression

The output is a data frame with a iter_num column indicating a separate Cox regression result from get_cox_res:

kable(iter_get_cox_res.df, caption = "Iterative Cox Regression Results")
iter_num term estimate std.error statistic p.value conf.low conf.high test_type
1 age 0.9983432 0.0028040 -0.5913434 0.5542904 0.9928717 1.003845 multicox
1 obstruct 1.2677379 0.0808045 2.9359039 0.0033258 1.0820531 1.485287 multicox
2 age 0.9975589 0.0027949 -0.8744983 0.3818469 0.9921094 1.003038 unicox

One could plot then the multiple Cox regression with facet by row as follows:

plot_cox_res(iter_get_cox_res.df,
             facet.formula = "iter_num ~ .", facet.scales = "free_y")
#> Adding significance line

By default, all features will appear in each facet. The facet.scales parameter drops features on the y-axes that are not part of the specific Cox regression.

You can even combine this with the group parameter:

iter_get_cox_res.group.df <- 
  iter_get_cox_res(colon, endpoint, endpoint.code, features,
                   group = "rx")
#> Detected multiple features. Running multivariate cox regression
#> Detected only one feature. Running univariate cox regression

kable(iter_get_cox_res.group.df, caption = "Iterative Cox Regression Results with Groups")
iter_num group term estimate std.error statistic p.value conf.low conf.high test_type
1 Obs age 1.0026174 0.0046032 0.5678581 0.5701313 0.9936124 1.0117040 multicox
1 Obs obstruct 1.2123725 0.1319705 1.4592591 0.1444938 0.9360576 1.5702528 multicox
1 Lev age 1.0042268 0.0048754 0.8651343 0.3869651 0.9946764 1.0138689 multicox
1 Lev obstruct 1.4151910 0.1293943 2.6837694 0.0072797 1.0981822 1.8237097 multicox
1 Lev+5FU age 0.9869403 0.0051866 -2.5345800 0.0112582 0.9769584 0.9970242 multicox
1 Lev+5FU obstruct 1.0844978 0.1677669 0.4835103 0.6287334 0.7805940 1.5067186 multicox
2 Obs age 1.0019378 0.0045949 0.4213225 0.6735196 0.9929551 1.0110018 unicox
2 Lev age 1.0032152 0.0048522 0.6615663 0.5082492 0.9937198 1.0128013 unicox
2 Lev+5FU age 0.9866753 0.0051580 -2.6006591 0.0093045 0.9767506 0.9967007 unicox
plot_cox_res(iter_get_cox_res.group.df,
             facet.formula = "iter_num ~ group", facet.scales = "free_y")
#> Adding significance line

Kaplan Meier Estimates/Curves

If you have generated a Kaplan-meier, there are several functions you can use to retrieve important statistics. For example, the get_surv_prob function is used for retrieving survival probability at certain times. Here is an example of how to generate survival probabilities for just the “Obs” arm at times 100, 200, and 300:

library("dplyr")
library("survival")
library("survutils")

times <- c(100, 200, 300)

colon %>%
  filter(rx == "Obs") %>%
  survfit(Surv(time, status) ~ 1, data = .) %>%
  get_surv_prob(times)
#> [1] 0.9730159 0.9174603 0.8476190

Here is a small trick you can employ to get the survival probability that for both arms simultaneously:

library("purrr")
library("reshape2")

surv.prob.res <- 
  colon %>%
  split(.$rx) %>%
  map(~ survfit(Surv(time, status) ~ 1, data = .)) %>%
  map(get_surv_prob, times)

surv.prob.res.df <- as_data_frame(surv.prob.res)
colnames(surv.prob.res.df) <- names(surv.prob.res)
surv.prob.res.df <-
  surv.prob.res.df %>%
  mutate(surv_prob_time = times)

surv.prob.res.df %>%
  melt(id.vars = "surv_prob_time", value.name = "surv_prob",
       variable.name = "group") %>%
  kable()
surv_prob_time group surv_prob
100 Obs 0.9730159
200 Obs 0.9174603
300 Obs 0.8476190
100 Lev 0.9708942
200 Lev 0.9110224
300 Lev 0.8543053
100 Lev+5FU 0.9785720
200 Lev+5FU 0.9439177
300 Lev+5FU 0.9059629

You can also retrieve a number at risks table using the get_nrisk_tbl function. Here we will use it to get the number at risk at time 100, 200, and 300:

survfit(Surv(time, status) ~ rx, data = colon) %>%
  get_nrisk_tbl(timeby = 100) %>%
  filter(time %in% c(100, 200, 300)) %>%
  kable()
strata time n.risk
rx=Obs 100 613
rx=Obs 200 578
rx=Obs 300 534
rx=Lev 100 601
rx=Lev 200 563
rx=Lev 300 528
rx=Lev+5FU 100 593
rx=Lev+5FU 200 572
rx=Lev+5FU 300 549

R Session

devtools::session_info()
#> Session info -------------------------------------------------------------
#>  setting  value                       
#>  version  R version 3.4.2 (2017-09-28)
#>  system   x86_64, darwin13.4.0        
#>  ui       unknown                     
#>  language (EN)                        
#>  collate  en_CA.UTF-8                 
#>  tz       Europe/London               
#>  date     2018-02-10
#> Packages -----------------------------------------------------------------
#>  package    * version date       source                        
#>  assertthat   0.2.0   2017-04-11 cran (@0.2.0)                 
#>  backports    1.1.1   2017-09-25 CRAN (R 3.4.2)                
#>  base       * 3.4.2   2017-10-12 local                         
#>  bindr        0.1     2016-11-13 cran (@0.1)                   
#>  bindrcpp   * 0.2     2017-06-17 cran (@0.2)                   
#>  broom        0.4.3   2017-11-20 cran (@0.4.3)                 
#>  colorspace   1.3-2   2016-12-14 cran (@1.3-2)                 
#>  compiler     3.4.2   2017-10-12 local                         
#>  datasets   * 3.4.2   2017-10-12 local                         
#>  devtools     1.13.3  2017-08-02 CRAN (R 3.4.2)                
#>  digest       0.6.12  2017-01-27 CRAN (R 3.4.2)                
#>  dplyr      * 0.7.4   2017-09-28 cran (@0.7.4)                 
#>  evaluate     0.10.1  2017-06-24 CRAN (R 3.4.2)                
#>  foreign      0.8-69  2017-06-21 CRAN (R 3.4.2)                
#>  ggplot2      2.2.1   2016-12-30 cran (@2.2.1)                 
#>  glue         1.2.0   2017-10-29 cran (@1.2.0)                 
#>  graphics   * 3.4.2   2017-10-12 local                         
#>  grDevices  * 3.4.2   2017-10-12 local                         
#>  grid         3.4.2   2017-10-12 local                         
#>  gtable       0.2.0   2016-02-26 cran (@0.2.0)                 
#>  highr        0.6     2016-05-09 CRAN (R 3.4.2)                
#>  htmltools    0.3.6   2017-04-28 CRAN (R 3.4.2)                
#>  knitr      * 1.17    2017-08-10 CRAN (R 3.4.2)                
#>  labeling     0.3     2014-08-23 cran (@0.3)                   
#>  lattice      0.20-35 2017-03-25 CRAN (R 3.4.2)                
#>  lazyeval     0.2.1   2017-10-29 cran (@0.2.1)                 
#>  magrittr     1.5     2014-11-22 CRAN (R 3.4.2)                
#>  Matrix       1.2-11  2017-08-16 CRAN (R 3.4.2)                
#>  memoise      1.1.0   2017-04-21 CRAN (R 3.4.2)                
#>  methods      3.4.2   2017-10-12 local                         
#>  mnormt       1.5-5   2016-10-15 cran (@1.5-5)                 
#>  munsell      0.4.3   2016-02-13 cran (@0.4.3)                 
#>  nlme         3.1-131 2017-02-06 CRAN (R 3.4.2)                
#>  parallel     3.4.2   2017-10-12 local                         
#>  pillar       1.1.0   2018-01-14 cran (@1.1.0)                 
#>  pkgconfig    2.0.1   2017-03-21 cran (@2.0.1)                 
#>  plyr         1.8.4   2016-06-08 cran (@1.8.4)                 
#>  psych        1.7.8   2017-09-09 cran (@1.7.8)                 
#>  purrr      * 0.2.4   2017-10-18 cran (@0.2.4)                 
#>  R6           2.2.2   2017-06-17 CRAN (R 3.4.2)                
#>  Rcpp         0.12.13 2017-09-28 CRAN (R 3.4.2)                
#>  reshape2   * 1.4.3   2017-12-11 cran (@1.4.3)                 
#>  rlang        0.1.6   2017-12-21 cran (@0.1.6)                 
#>  rmarkdown    1.6     2017-06-15 CRAN (R 3.4.2)                
#>  rprojroot    1.2     2017-01-16 CRAN (R 3.4.2)                
#>  scales       0.5.0   2017-08-24 cran (@0.5.0)                 
#>  splines      3.4.2   2017-10-12 local                         
#>  stats      * 3.4.2   2017-10-12 local                         
#>  stringi      1.1.5   2017-04-07 CRAN (R 3.4.2)                
#>  stringr      1.2.0   2017-02-18 CRAN (R 3.4.2)                
#>  survival   * 2.41-3  2017-04-04 CRAN (R 3.4.2)                
#>  survutils  * 1.0.1   2018-02-10 local (tinyheero/survutils@NA)
#>  tibble       1.4.2   2018-01-22 cran (@1.4.2)                 
#>  tidyr        0.8.0   2018-01-29 cran (@0.8.0)                 
#>  tools        3.4.2   2017-10-12 local                         
#>  utils      * 3.4.2   2017-10-12 local                         
#>  withr        2.0.0   2017-07-28 CRAN (R 3.4.2)                
#>  yaml         2.1.14  2016-11-12 CRAN (R 3.4.2)