Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/develop' into feat/#21-recreate-cli
Browse files Browse the repository at this point in the history
  • Loading branch information
hayato-m126 committed Sep 5, 2024
2 parents 88f8fe8 + 68cf5b7 commit d10a6e4
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 2 deletions.
3 changes: 2 additions & 1 deletion docs/overview/index.en.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,10 +39,11 @@ The details of the node's operation are shown in the figure below.
1. Acquire rosbags for evaluation using a real-world vehicle.
2. Filter the acquired rosbags to contain only sufficient input topics in required period of time
- For this purpose please use [ros2bag_extensions](https://github.com/tier4/ros2bag_extensions) package (developed by TIER IV). To properly filter the input rosbag:
- See docs/use_case/ documentations for which topics to leave in the filter.
3. Create an evaluation scenario
1. Example scenarios could be found in the repository's [sample folder](https://github.com/tier4/driving_log_replayer_v2/tree/main/sample)
2. Refer to the [format definition](../result_format/index.md) section of this document for description contents.
4. If the node should test obstacle_segmentation or perception stacks, please annotate with an annotation tool that supports conversion to t4_dataset.
4. If the node should test obstacle_segmentation, perception, perception_2d, or traffic_light stacks, please annotate with an annotation tool that supports conversion to t4_dataset.
1. [Deepen.AI](https://www.deepen.ai/) is available.
2. By adding conversion functionality to [perception_dataset](https://github.com/tier4/tier4_perception_dataset), it becomes possible to use other annotation tools as well.
5. Perform the evaluation.
3 changes: 2 additions & 1 deletion docs/overview/index.ja.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,10 +38,11 @@ driving_log_replayer_v2 の評価ノードは、以下のように動作しま
1. 評価用の rosbag を実車で取得する
2. 取得した rosbag を必要な時間、topic だけ残るようにフィルタする
- フィルタ処理には TIER IV で開発した [ros2bag_extensions](https://github.com/tier4/ros2bag_extensions) を使用する
- フィルタでどのtopicを残すかは、docs/use_case/のドキュメント参照
3. シナリオを作成する
1. [sample folder](https://github.com/tier4/driving_log_replayer_v2/tree/main/sample) 内にシナリオの例あり
2. 記述内容は[フォーマット定義](../result_format/index.md)を参照
4. ユースケースが obstacle_segmentation, perception の場合、t4_dataset への変換に対応したアノテーションツールでアノテーションを実施する。
4. ユースケースが obstacle_segmentation, perception, perception_2d, traffic_light の場合、t4_dataset への変換に対応したアノテーションツールでアノテーションを実施する。
1. [Deepen.AI](https://www.deepen.ai/)が利用可能
2. [perception_dataset](https://github.com/tier4/tier4_perception_dataset)に変換機能を追加すれば他のアノテーションツールも使用可能になる
5. 評価を実行する。

0 comments on commit d10a6e4

Please sign in to comment.