Skip to content

Latest commit

 

History

History
39 lines (22 loc) · 1.16 KB

README.md

File metadata and controls

39 lines (22 loc) · 1.16 KB

squeezenet v1.1

SqueezeNet 1.1 model from the official SqueezeNet repo https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1

SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.

For the Pytorch implementation, you can refer to pytorchx/squeezenet

Following tricks are used in this squeezenet,

  • MaxPool2d(ceil_mode=True), ceilmode=True, which is not supported in Tensorrt4, we use a padding layer before maxpool to solve this problem.
  • For Pytorch AdaptiveAvgPool2d(), we use fixed input dimension, and use regular average pooling to replace it.
// 1. generate squeezenet.wts from [pytorchx/squeezenet](https://github.com/wang-xinyu/pytorchx/tree/master/squeezenet)

// 2. put squeezenet.wts into tensorrtx/squeezenet

// 3. build and run

cd tensorrtx/squeezenet

mkdir build

cd build

cmake ..

make

sudo ./squeezenet -s   // serialize model to plan file i.e. 'squeezenet.engine'
sudo ./squeezenet -d   // deserialize plan file and run inference

// 4. see if the output is same as pytorchx/squeezenet