Skip to content

Implementation of popular deep learning networks with TensorRT network definition APIs

License

Notifications You must be signed in to change notification settings

threeYANG/tensorrtx

 
 

Repository files navigation

TensorRTx

TensorRTx aims to implement popular deep learning networks with tensorrt network definition APIs. As we know, tensorrt has builtin parsers, including caffeparser, uffparser, onnxparser, etc. But when we use these parsers, we often run into some "unsupported operations or layers" problems, especially some state-of-the-art models are using new type of layers.

So why don't we just skip all parsers? We just use TensorRT network definition APIs to build the whole network, it's not so complicated.

I wrote this project to get familiar with tensorrt API, and also to share and learn from the community.

All the models are implemented in pytorch or mxnet first, and export a weights file xxx.wts, and then use tensorrt to load weights, define network and do inference. Some pytorch implementations can be found in my repo Pytorchx, the remaining are from polular open-source implementations.

News

  • 22 May 2020. A new branch trt4 created, which is using TensorRT 4 API. Now the master branch is using TensorRT 7 API. But only yolov4 has been migrated to TensorRT 7 API for now. The rest will be migrated soon. And a tutorial for migarating from TensorRT 4 to 7 provided.
  • 28 May 2020. arcface LResNet50E-IR model from deepinsight/insightface implemented. We got 333fps on GTX1080.
  • 2 June 2020. yolov3 and yolov3-spp migrated to TensorRT 7 API. The new yolov3 is using pytorch implementation ultralytics/yolov3, the yolov3 in branch trt4 was using pytorch implementation ayooshkathuria/pytorch-yolo-v3.
  • 23 June 2020. Update yolov5-s model according to ultralytics/yolov5's PANet updates on 22 June 2020.
  • 6 July 2020. Add yolov3-tiny, and got 333fps on GTX1080.

Tutorials

Test Environment

  1. GTX1080 / Ubuntu16.04 / cuda10.0 / cudnn7.6.5 / tensorrt7.0.0 / nvinfer7.0.0 / opencv3.3

How to run

Each folder has a readme inside, which explains how to run the models inside.

Models

Following models are implemented.

Name Description
lenet the simplest, as a "hello world" of this project
alexnet easy to implement, all layers are supported in tensorrt
googlenet GoogLeNet (Inception v1)
inception Inception v3
mnasnet MNASNet with depth multiplier of 0.5 from the paper
mobilenetv2 MobileNet V2
mobilenetv3 V3-small, V3-large.
resnet resnet-18, resnet-50 and resnext50-32x4d are implemented
senet se-resnet50
shufflenet ShuffleNetV2 with 0.5x output channels
squeezenet SqueezeNet 1.1 model
vgg VGG 11-layer model
yolov3-tiny weights and pytorch implementation from ultralytics/yolov3
yolov3 darknet-53, weights and pytorch implementation from ultralytics/yolov3
yolov3-spp darknet-53, weights and pytorch implementation from ultralytics/yolov3
yolov4 CSPDarknet53, weights from AlexeyAB/darknet, pytorch implementation from ultralytics/yolov3
yolov5 yolov5-s, pytorch implementation from ultralytics/yolov5
retinaface resnet-50, weights from biubug6/Pytorch_Retinaface
arcface LResNet50E-IR, weights from deepinsight/insightface
retinafaceAntiCov mobilenet0.25, weights from deepinsight/insightface, retinaface anti-COVID-19, detect face and mask attribute

Tricky Operations

Some tricky operations encountered in these models, already solved, but might have better solutions.

Name Description
BatchNorm Implement by a scale layer, used in resnet, googlenet, mobilenet, etc.
MaxPool2d(ceil_mode=True) use a padding layer before maxpool to solve ceil_mode=True, see googlenet.
average pool with padding use setAverageCountExcludesPadding() when necessary, see inception.
relu6 use Relu6(x) = Relu(x) - Relu(x-6), see mobilenet.
torch.chunk() implement the 'chunk(2, dim=C)' by tensorrt plugin, see shufflenet.
channel shuffle use two shuffle layers to implement channel_shuffle, see shufflenet.
adaptive pool use fixed input dimension, and use regular average pooling, see shufflenet.
leaky relu I wrote a leaky relu plugin, but PRelu in NvInferPlugin.h can be used, see yolov3 in branch trt4.
yolo layer v1 yolo layer is implemented as a plugin, see yolov3 in branch trt4.
yolo layer v2 three yolo layers implemented in one plugin, see yolov3-spp.
upsample replaced by a deconvolution layer, see yolov3.
hsigmoid hard sigmoid is implemented as a plugin, hsigmoid and hswish are used in mobilenetv3
retinaface output decode implement a plugin to decode bbox, confidence and landmarks, see retinaface.
mish mish activation is implemented as a plugin, mish is used in yolov4
prelu mxnet's prelu activation with trainable gamma is implemented as a plugin, used in arcface

Speed Benchmark

Models Device BatchSize Mode Input Shape(HxW) FPS
YOLOv3-tiny Xeon E5-2620/GTX1080 1 FP16 608x608 333
YOLOv3(darknet53) Xeon E5-2620/GTX1080 1 FP16 608x608 39.2
YOLOv3-spp(darknet53) Xeon E5-2620/GTX1080 1 FP32 256x416 94
YOLOv3-spp(darknet53) Xeon E5-2620/GTX1080 1 FP16 608x608 38.5
YOLOv4(CSPDarknet53) Xeon E5-2620/GTX1080 1 FP16 608x608 35.7
YOLOv4(CSPDarknet53) Xeon E5-2620/GTX1080 4 FP16 608x608 40.9
YOLOv4(CSPDarknet53) Xeon E5-2620/GTX1080 8 FP16 608x608 41.3
YOLOv5-s Xeon E5-2620/GTX1080 1 FP16 608x608 142
YOLOv5-s Xeon E5-2620/GTX1080 4 FP16 608x608 173
YOLOv5-s Xeon E5-2620/GTX1080 8 FP16 608x608 190
RetinaFace(resnet50) TX2 1 FP16 384x640 15
RetinaFace(resnet50) Xeon E5-2620/GTX1080 1 FP32 928x1600 15
ArcFace(LResNet50E-IR) Xeon E5-2620/GTX1080 1 FP32 112x112 333

Help wanted, if you got speed results, please add an issue or PR.

Acknowledgments & Contact

Currently, This repo is funded by Alleyes-THU AI Lab(aboutus in Chinese). We are based in Tsinghua University, Beijing, and seeking for talented interns for CV R&D. Contact me if you are interested.

Any contributions, questions and discussions are welcomed, contact me by following info.

E-mail: [email protected]

WeChat ID: wangxinyu0375

About

Implementation of popular deep learning networks with TensorRT network definition APIs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 88.0%
  • Cuda 9.2%
  • CMake 2.1%
  • Python 0.7%