forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnasnet.cpp
340 lines (287 loc) · 13.5 KB
/
mnasnet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include "common.h"
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
// stuff we know about the network and the input/output blobs
static const int INPUT_H = 224;
static const int INPUT_W = 224;
static const int OUTPUT_SIZE = 1000;
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
using namespace nvinfer1;
static Logger gLogger;
// Load weights from files shared with TensorRT samples.
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file)
{
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
std::cout << "len " << len << std::endl;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
ILayer* invertedRes(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname,
int inch, int outch, int ksize, int s, int exp) {
std::cout << lname << std::endl;
Weights emptywts{DataType::kFLOAT, nullptr, 0};
int midch = inch * exp;
IConvolutionLayer* conv1 = network->addConvolution(input, midch, DimsHW{1, 1}, weightMap[lname + "layers.0.weight"], emptywts);
assert(conv1);
IScaleLayer *bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "layers.1", 1e-5);
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
IConvolutionLayer* conv2 = network->addConvolution(*relu1->getOutput(0), midch, DimsHW{ksize, ksize}, weightMap[lname + "layers.3.weight"], emptywts);
assert(conv2);
conv2->setStride(DimsHW{s, s});
conv2->setPadding(DimsHW{ksize / 2, ksize / 2});
conv2->setNbGroups(midch);
IScaleLayer *bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "layers.4", 1e-5);
IActivationLayer* relu2 = network->addActivation(*bn2->getOutput(0), ActivationType::kRELU);
assert(relu2);
IConvolutionLayer* conv3 = network->addConvolution(*relu2->getOutput(0), outch, DimsHW{1, 1}, weightMap[lname + "layers.6.weight"], emptywts);
assert(conv3);
IScaleLayer *bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "layers.7", 1e-5);
if (inch == outch && s == 1) {
IElementWiseLayer* ew1 = network->addElementWise(*bn3->getOutput(0), input, ElementWiseOperation::kSUM);
assert(ew1);
return ew1;
}
return bn3;
}
// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, DataType dt)
{
INetworkDefinition* network = builder->createNetwork();
// Create input tensor of shape { 1, 1, 32, 32 } with name INPUT_BLOB_NAME
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{3, INPUT_H, INPUT_W});
assert(data);
std::map<std::string, Weights> weightMap = loadWeights("../mnasnet.wts");
Weights emptywts{DataType::kFLOAT, nullptr, 0};
IConvolutionLayer* conv1 = network->addConvolution(*data, 32, DimsHW{3, 3}, weightMap["layers.0.weight"], emptywts);
assert(conv1);
conv1->setStride(DimsHW{2, 2});
conv1->setPadding(DimsHW{1, 1});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "layers.1", 1e-5);
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
IConvolutionLayer* conv2 = network->addConvolution(*relu1->getOutput(0), 32, DimsHW{3, 3}, weightMap["layers.3.weight"], emptywts);
assert(conv2);
conv2->setPadding(DimsHW{1, 1});
conv2->setNbGroups(32);
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), "layers.4", 1e-5);
IActivationLayer* relu2 = network->addActivation(*bn2->getOutput(0), ActivationType::kRELU);
assert(relu2);
IConvolutionLayer* conv3 = network->addConvolution(*relu2->getOutput(0), 16, DimsHW{1, 1}, weightMap["layers.6.weight"], emptywts);
assert(conv3);
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), "layers.7", 1e-5);
ILayer* ir1 = invertedRes(network, weightMap, *bn3->getOutput(0), "layers.8.0.", 16, 16, 3, 2, 3);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.8.1.", 16, 16, 3, 1, 3);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.8.2.", 16, 16, 3, 1, 3);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.9.0.", 16, 24, 5, 2, 3);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.9.1.", 24, 24, 5, 1, 3);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.9.2.", 24, 24, 5, 1, 3);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.10.0.", 24, 40, 5, 2, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.10.1.", 40, 40, 5, 1, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.10.2.", 40, 40, 5, 1, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.11.0.", 40, 48, 3, 1, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.11.1.", 48, 48, 3, 1, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.12.0.", 48, 96, 5, 2, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.12.1.", 96, 96, 5, 1, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.12.2.", 96, 96, 5, 1, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.12.3.", 96, 96, 5, 1, 6);
ir1 = invertedRes(network, weightMap, *ir1->getOutput(0), "layers.13.0.", 96, 160, 3, 1, 6);
IConvolutionLayer* conv4 = network->addConvolution(*ir1->getOutput(0), 1280, DimsHW{1, 1}, weightMap["layers.14.weight"], emptywts);
assert(conv4);
IScaleLayer* bn4 = addBatchNorm2d(network, weightMap, *conv4->getOutput(0), "layers.15", 1e-5);
IActivationLayer* relu3 = network->addActivation(*bn4->getOutput(0), ActivationType::kRELU);
assert(relu3);
IPoolingLayer* pool2 = network->addPooling(*relu3->getOutput(0), PoolingType::kAVERAGE, DimsHW{7, 7});
assert(pool2);
IFullyConnectedLayer* fc1 = network->addFullyConnected(*pool2->getOutput(0), 1000, weightMap["classifier.1.weight"], weightMap["classifier.1.bias"]);
assert(fc1);
fc1->getOutput(0)->setName(OUTPUT_BLOB_NAME);
std::cout << "set name out" << std::endl;
network->markOutput(*fc1->getOutput(0));
// Build engine
builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(1 << 20);
ICudaEngine* engine = builder->buildCudaEngine(*network);
std::cout << "build out" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*) (mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream)
{
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = createEngine(maxBatchSize, builder, DataType::kFLOAT);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
}
void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
{
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
assert(engine.getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
// Create GPU buffers on device
CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
// Create stream
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}
int main(int argc, char** argv)
{
if (argc != 2) {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./mnasnet -s // serialize model to plan file" << std::endl;
std::cerr << "./mnasnet -d // deserialize plan file and run inference" << std::endl;
return -1;
}
// create a model using the API directly and serialize it to a stream
char *trtModelStream{nullptr};
size_t size{0};
if (std::string(argv[1]) == "-s") {
IHostMemory* modelStream{nullptr};
APIToModel(1, &modelStream);
assert(modelStream != nullptr);
std::ofstream p("mnasnet.engine");
if (!p)
{
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 1;
} else if (std::string(argv[1]) == "-d") {
std::ifstream file("mnasnet.engine", std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
} else {
return -1;
}
// Subtract mean from image
float data[3 * INPUT_H * INPUT_W];
for (int i = 0; i < 3 * INPUT_H * INPUT_W; i++)
data[i] = 1.0;
//PluginFactory pf;
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
// Run inference
float prob[OUTPUT_SIZE];
for (int i = 0; i < 100; i++) {
auto start = std::chrono::system_clock::now();
doInference(*context, data, prob, 1);
auto end = std::chrono::system_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
}
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
// Print histogram of the output distribution
std::cout << "\nOutput:\n\n";
for (unsigned int i = 0; i < OUTPUT_SIZE; i++)
{
std::cout << prob[i] << ", ";
if (i % 10 == 0) std::cout << i / 10 << std::endl;
}
std::cout << std::endl;
return 0;
}