Add sparse block diagonal matrices #4201
Triggered via pull request
September 26, 2023 16:45
Status
Failure
Total duration
1h 11m 40s
Artifacts
–
CI.yml
on: pull_request
Documentation
12m 11s
Matrix: test
Annotations
5 errors and 1 warning
test (~1.10.0-0, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
|
test (~1.10.0-0, ubuntu-latest)
The operation was canceled.
|
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
|
test (nightly, ubuntu-latest)
Process completed with exit code 143.
|
test (1.9, macOS-latest)
Process completed with exit code 1.
|
Documentation:
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2320 docstrings not included in the manual:
isfinite_gen
genus :: Tuple{HermLat, Any}
genus :: Union{Tuple{HypellCrv{T}}, Tuple{T}} where T
genus :: Tuple{Type{HermLat}, Any, Any, Any}
genus :: Tuple{AbstractAlgebra.Generic.FunctionField}
genus :: Tuple{Vector{HermLocalGenus}, Any}
genus :: Tuple{Hecke.JorDec}
genus :: Tuple{MatElem, Any}
genus :: Tuple{HermLat}
FpPolyRingElem
contains_nonnegative :: Tuple{RealFieldElem}
contains_nonnegative :: Tuple{arb}
isreducible
isprime_known
_block_indices_vals :: Tuple{Union{ZZModMatrix, zzModMatrix}, Any}
iscomplex_conjugation
fq_abs_series
isin
root :: Tuple{Hecke.MPolyFact.RootCtx, Int64, Int64}
fmpq_poly
FqPolyRepPolyRingElem
has_ambient_space :: Tuple{AbstractLat}
nf_elem
islocally_hyperbolic
decompose :: Union{Tuple{AlgAss{T}}, Tuple{T}} where T
fmpz_mod_poly
fpMatrixSpace
inner_product :: Tuple{AbstractLat, Any, Any}
inner_product :: Tuple{AbstractSpace, MatElem, MatElem}
docstring :: Tuple{Symbol, Symbol}
is_less_abs_imag :: Tuple{qqbar, qqbar}
issubgroup
FqPolyRepMPolyRing
ArbField :: Tuple{qqbar}
padic
CyclotomicRealSubfield
log_barnes_g :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
log_barnes_g :: Tuple{acb}
is_bijective :: Tuple{GrpAbFinGenMap}
is_bijective :: Tuple{TorQuadModuleMor}
formal_inverse :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}}
_brown_indecomposable :: Tuple{MatElem, ZZRingElem}
coprime_base_insert :: Tuple{Any, Any}
isirreducible_easy
inertia_subgroup :: Tuple{ClassField, NfOrdIdl}
dedekind_eta :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
dedekind_eta :: Tuple{acb}
isgenus
HessQRModule
isconjugate
fq_nmod
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, Hecke.NfRelOrdElem{T, U}}} where {T, S, U}
ideal :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, FakeFmpqMat}
ideal :: Tuple{NfAbsOrd, Vector{<:NfAbsOrdElem}}
ideal :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, Hecke.AlgAssAbsOrd, FakeFmpqMat}
ideal :: Tuple{NfAbsOrd, ZZMatrix}
ideal :: Union{Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S}, AbstractAlgebra.Generic.Mat{T}}} where {T, S}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Hecke.AlgAssRelOrd{S, T, U}, Hecke.PMat{S, T}}} where {S<:NumFieldElem, T, U}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, Hecke.AbsAlgAssElem{S}, Symbol}} where {S, T, U}
ideal :: Tuple{Hecke.AlgAssRelOrd{nf_elem, Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}}, NfAbsOrdIdl}
ideal :: Tuple{Hecke.AbsAlgAss, MatElem}
ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Hecke.PMat{S, T}}} where {S<:NumFieldElem, T}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, T}} where {S, T, U}
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, U, U, S, S}} where {T, S, U}
ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, Hecke.AbsAlgAssElem{S}}} where {S, T, U}
ideal :: Tuple{Hecke.AbsAlgAss, Hecke.AbsAlgAssElem, Symbol}
ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrd{S, T}, T}} where {S, T}
ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrd{S, T}, T, Symbol}} where {S, T}
ideal :: Tuple{Hecke.AbsAlgAss, Hecke.AbsAlgAssElem}
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, S}} where {T, S, U}
ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, Hecke.PMat{T, S}}} where {T, S, U}
points_with_x
setunion :: Tuple{arb, arb}
setunion :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}}
cycle :: Tuple{QuadBin{ZZRingElem}}
isimaginary
combination :: Tuple{Hecke.MPolyFact.RootCtx}
absolute_anti_uniformizer :: Tuple{NumFieldOrdIdl}
restrict_scalars :: Union{Tuple{AbstractLat, QQ
|