Skip to content

Add sparse block diagonal matrices #4201

Add sparse block diagonal matrices

Add sparse block diagonal matrices #4201

Triggered via pull request September 26, 2023 16:45
Status Failure
Total duration 1h 11m 40s
Artifacts

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

5 errors and 1 warning
test (~1.10.0-0, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (~1.10.0-0, ubuntu-latest)
The operation was canceled.
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (nightly, ubuntu-latest)
Process completed with exit code 143.
test (1.9, macOS-latest)
Process completed with exit code 1.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2320 docstrings not included in the manual: isfinite_gen genus :: Tuple{HermLat, Any} genus :: Union{Tuple{HypellCrv{T}}, Tuple{T}} where T genus :: Tuple{Type{HermLat}, Any, Any, Any} genus :: Tuple{AbstractAlgebra.Generic.FunctionField} genus :: Tuple{Vector{HermLocalGenus}, Any} genus :: Tuple{Hecke.JorDec} genus :: Tuple{MatElem, Any} genus :: Tuple{HermLat} FpPolyRingElem contains_nonnegative :: Tuple{RealFieldElem} contains_nonnegative :: Tuple{arb} isreducible isprime_known _block_indices_vals :: Tuple{Union{ZZModMatrix, zzModMatrix}, Any} iscomplex_conjugation fq_abs_series isin root :: Tuple{Hecke.MPolyFact.RootCtx, Int64, Int64} fmpq_poly FqPolyRepPolyRingElem has_ambient_space :: Tuple{AbstractLat} nf_elem islocally_hyperbolic decompose :: Union{Tuple{AlgAss{T}}, Tuple{T}} where T fmpz_mod_poly fpMatrixSpace inner_product :: Tuple{AbstractLat, Any, Any} inner_product :: Tuple{AbstractSpace, MatElem, MatElem} docstring :: Tuple{Symbol, Symbol} is_less_abs_imag :: Tuple{qqbar, qqbar} issubgroup FqPolyRepMPolyRing ArbField :: Tuple{qqbar} padic CyclotomicRealSubfield log_barnes_g :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}} log_barnes_g :: Tuple{acb} is_bijective :: Tuple{GrpAbFinGenMap} is_bijective :: Tuple{TorQuadModuleMor} formal_inverse :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}} _brown_indecomposable :: Tuple{MatElem, ZZRingElem} coprime_base_insert :: Tuple{Any, Any} isirreducible_easy inertia_subgroup :: Tuple{ClassField, NfOrdIdl} dedekind_eta :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}} dedekind_eta :: Tuple{acb} isgenus HessQRModule isconjugate fq_nmod ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, Hecke.NfRelOrdElem{T, U}}} where {T, S, U} ideal :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, FakeFmpqMat} ideal :: Tuple{NfAbsOrd, Vector{<:NfAbsOrdElem}} ideal :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, Hecke.AlgAssAbsOrd, FakeFmpqMat} ideal :: Tuple{NfAbsOrd, ZZMatrix} ideal :: Union{Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S}, AbstractAlgebra.Generic.Mat{T}}} where {T, S} ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Hecke.AlgAssRelOrd{S, T, U}, Hecke.PMat{S, T}}} where {S<:NumFieldElem, T, U} ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, Hecke.AbsAlgAssElem{S}, Symbol}} where {S, T, U} ideal :: Tuple{Hecke.AlgAssRelOrd{nf_elem, Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}}, NfAbsOrdIdl} ideal :: Tuple{Hecke.AbsAlgAss, MatElem} ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Hecke.PMat{S, T}}} where {S<:NumFieldElem, T} ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, T}} where {S, T, U} ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, U, U, S, S}} where {T, S, U} ideal :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrd{S, T, U}, Hecke.AbsAlgAssElem{S}}} where {S, T, U} ideal :: Tuple{Hecke.AbsAlgAss, Hecke.AbsAlgAssElem, Symbol} ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrd{S, T}, T}} where {S, T} ideal :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrd{S, T}, T, Symbol}} where {S, T} ideal :: Tuple{Hecke.AbsAlgAss, Hecke.AbsAlgAssElem} ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, S}} where {T, S, U} ideal :: Union{Tuple{U}, Tuple{S}, Tuple{T}, Tuple{Hecke.NfRelOrd{T, S, U}, Hecke.PMat{T, S}}} where {T, S, U} points_with_x setunion :: Tuple{arb, arb} setunion :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}} cycle :: Tuple{QuadBin{ZZRingElem}} isimaginary combination :: Tuple{Hecke.MPolyFact.RootCtx} absolute_anti_uniformizer :: Tuple{NumFieldOrdIdl} restrict_scalars :: Union{Tuple{AbstractLat, QQ