Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhancement/issue 840 #842

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
266 changes: 247 additions & 19 deletions ehrapy/tools/_sa.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
import warnings
from typing import TYPE_CHECKING, Literal

import numpy as np # This package is implicitly used
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
Expand All @@ -23,6 +22,7 @@
if TYPE_CHECKING:
from collections.abc import Iterable

import numpy as np
from anndata import AnnData
from statsmodels.genmod.generalized_linear_model import GLMResultsWrapper

Expand Down Expand Up @@ -347,23 +347,63 @@ def anova_glm(result_1: GLMResultsWrapper, result_2: GLMResultsWrapper, formula_
return dataframe


def _regression_model(
model_class, adata: AnnData, duration_col: str, event_col: str, entry_col: str = None, accept_zero_duration=True
):
def _regression_model_data_frame_preparation(adata: AnnData, duration_col: str, accept_zero_duration=True):
"""Convenience function for regression models."""
df = anndata_to_df(adata)
df = df.dropna()

if not accept_zero_duration:
df.loc[df[duration_col] == 0, duration_col] += 1e-5

model = model_class()
model.fit(df, duration_col, event_col, entry_col=entry_col)
return df

return model

def _regression_model_populate_adata(adata: AnnData, model_summary: pd.DataFrame, key_added_prefix: str = None):
if key_added_prefix is None:
key_added_prefix = ""
else:
key_added_prefix = key_added_prefix + "_"

full_results = pd.DataFrame(index=adata.var.index)

# Populate with CoxPH summary data
for key in model_summary.columns:
full_results[key_added_prefix + key] = model_summary[key]

# Add a boolean column indicating rows populated by this function
full_results[key_added_prefix + "cox_ph_populated"] = full_results.notna().any(axis=1)

def cox_ph(adata: AnnData, duration_col: str, event_col: str, entry_col: str = None) -> CoxPHFitter:
# Assign results back to adata.var
for col in full_results.columns:
adata.var[col] = full_results[col]


def cox_ph(
adata: AnnData,
duration_col: str,
*,
inplace: bool = True,
key_added_prefix: str | None = None,
alpha: float = 0.05,
label: str | None = None,
baseline_estimation_method: Literal["breslow", "spline", "piecewise"] = "breslow",
penalizer: float | np.ndarray = 0.0,
l1_ratio: float = 0.0,
strata: list[str] | str | None = None,
n_baseline_knots: int = 4,
knots: list[float] | None = None,
breakpoints: list[float] | None = None,
event_col: str = None,
weights_col: str | None = None,
cluster_col: str | None = None,
entry_col: str = None,
robust: bool = False,
formula: str = None,
batch_mode: bool = None,
show_progress: bool = False,
initial_point: np.ndarray | None = None,
fit_options: dict | None = None,
) -> CoxPHFitter:
"""Fit the Cox’s proportional hazard for the survival function.

The Cox proportional hazards model (CoxPH) examines the relationship between the survival time of subjects and one or more predictor variables.
Expand All @@ -376,7 +416,27 @@ def cox_ph(adata: AnnData, duration_col: str, event_col: str, entry_col: str = N
duration_col: The name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: The name of the column in anndata that contains the subjects’ death observation.
If left as None, assume all individuals are uncensored.
inplace: Whether to modify the AnnData object in place.
key_added_prefix: Prefix to add to the column names in the AnnData object. An underscore will be added between the prefix and the column
alpha: The alpha value in the confidence intervals.
label: A string to name the column of the estimate.
baseline_estimation_method: The method used to estimate the baseline hazard. Options are 'breslow', 'spline', and 'piecewise'.
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates.
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above.
strata: specify a list of columns to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the strata expression in R. See http://courses.washington.edu/b515/l17.pdf.
n_baseline_knots: Used when baseline_estimation_method="spline". Set the number of knots (interior & exterior) in the baseline hazard, which will be placed evenly along the time axis. Should be at least 2. Royston et. al, the authors of this model, suggest 4 to start, but any values between 2 and 8 are reasonable. If you need to customize the timestamps used to calculate the curve, use the knots parameter instead.
knots: When baseline_estimation_method="spline", this allows customizing the points in the time axis for the baseline hazard curve. To use evenly-spaced points in time, the n_baseline_knots parameter can be employed instead.
breakpoints: Used when baseline_estimation_method="piecewise". Set the positions of the baseline hazard breakpoints.
event_col: he name of the column in DataFrame that contains the subjects’ death observation. If left as None, assume all individuals are uncensored.
weights_col: The name of the column in DataFrame that contains the weights for each subject.
cluster_col: The name of the column in DataFrame that contains the cluster variable. Using this forces the sandwich estimator (robust variance estimator) to be used.
entry_col: Column denoting when a subject entered the study, i.e. left-truncation.
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ.
formula: an Wilkinson formula, like in R and statsmodels, for the right-hand-side. If left as None, all columns not assigned as durations, weights, etc. are used. Uses the library Formulaic for parsing.
batch_mode: enabling batch_mode can be faster for datasets with a large number of ties. If left as None, lifelines will choose the best option.
show_progress: since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing.
initial_point: set the starting point for the iterative solver.
fit_options: Additional keyword arguments to pass into the estimator.

Returns:
Fitted CoxPHFitter.
Expand All @@ -388,10 +448,61 @@ def cox_ph(adata: AnnData, duration_col: str, event_col: str, entry_col: str = N
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> cph = ep.tl.cox_ph(adata, "mort_day_censored", "censor_flg")
"""
return _regression_model(CoxPHFitter, adata, duration_col, event_col, entry_col)
df = _regression_model_data_frame_preparation(adata, duration_col)
cox_ph = CoxPHFitter(
alpha=alpha,
label=label,
strata=strata,
baseline_estimation_method=baseline_estimation_method,
penalizer=penalizer,
l1_ratio=l1_ratio,
n_baseline_knots=n_baseline_knots,
knots=knots,
breakpoints=breakpoints,
)
cox_ph.fit(
df,
duration_col=duration_col,
event_col=event_col,
entry_col=entry_col,
robust=robust,
initial_point=initial_point,
weights_col=weights_col,
cluster_col=cluster_col,
batch_mode=batch_mode,
formula=formula,
fit_options=fit_options,
show_progress=show_progress,
)

# Add the results to the AnnData object
if inplace:
_regression_model_populate_adata(adata, cox_ph.summary, key_added_prefix)

def weibull_aft(adata: AnnData, duration_col: str, event_col: str, entry_col: str = None) -> WeibullAFTFitter:
return cox_ph


def weibull_aft(
adata: AnnData,
duration_col: str,
*,
inplace: bool = True,
key_added_prefix: str | None = None,
alpha: float = 0.05,
fit_intercept: bool = True,
penalizer: float | np.ndarray = 0.0,
l1_ratio: float = 0.0,
model_ancillary: bool = True,
event_col: str | None = None,
ancillary: bool | pd.DataFrame | str | None = None,
show_progress: bool = False,
weights_col: str | None = None,
robust: bool = False,
initial_point=None,
entry_col: str | None = None,
formula: str | None = None,
fit_options: dict | None = None,
) -> WeibullAFTFitter:
"""Fit the Weibull accelerated failure time regression for the survival function.

The Weibull Accelerated Failure Time (AFT) survival regression model is a statistical method used to analyze time-to-event data,
Expand All @@ -403,24 +514,94 @@ def weibull_aft(adata: AnnData, duration_col: str, event_col: str, entry_col: st
Args:
adata: AnnData object with necessary columns `duration_col` and `event_col`.
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: Name of the column in anndata that contains the subjects’ death observation.
inplace: Whether to modify the AnnData object in place.
key_added_prefix: Prefix to add to the column names in the AnnData object. An underscore will be added between the prefix and the column name.
alpha: The alpha value in the confidence intervals.
fit_intercept: Whether to fit an intercept term in the model.
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates.
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above.
model_ancillary: set the model instance to always model the ancillary parameter with the supplied Dataframe. This is useful for grid-search optimization.
event_col: Name of the column in anndata that contains the subjects’ death observation. 1 if observed, 0 else (censored).
If left as None, assume all individuals are uncensored.
ancillary: Choose to model the ancillary parameters.
If None or False, explicitly do not fit the ancillary parameters using any covariates.
If True, model the ancillary parameters with the same covariates as ``df``.
If DataFrame, provide covariates to model the ancillary parameters. Must be the same row count as ``df``.
If str, should be a formula
show_progress: since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing.
weights_col: The name of the column in DataFrame that contains the weights for each subject.
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ.
initial_point: set the starting point for the iterative solver.
entry_col: Column denoting when a subject entered the study, i.e. left-truncation.
formula: Use an R-style formula for modeling the dataset. See formula syntax: https://matthewwardrop.github.io/formulaic/basic/grammar/
If a formula is not provided, all variables in the dataframe are used (minus those used for other purposes like event_col, etc.)
fit_options: Additional keyword arguments to pass into the estimator.


Returns:
Fitted WeibullAFTFitter.

Examples:
>>> import ehrapy as ep
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> aft = ep.tl.weibull_aft(adata, "mort_day_censored", "censor_flg")
>>> adata = adata[:, ["mort_day_censored", "censor_flg"]]
>>> aft = ep.tl.weibull_aft(adata, duration_col="mort_day_censored", event_col="censor_flg")
>>> aft.print_summary()
"""
return _regression_model(WeibullAFTFitter, adata, duration_col, event_col, entry_col, accept_zero_duration=False)

df = _regression_model_data_frame_preparation(adata, duration_col, accept_zero_duration=False)

weibull_aft = WeibullAFTFitter(
alpha=alpha,
fit_intercept=fit_intercept,
penalizer=penalizer,
l1_ratio=l1_ratio,
model_ancillary=model_ancillary,
)

weibull_aft.fit(
df,
duration_col=duration_col,
event_col=event_col,
entry_col=entry_col,
ancillary=ancillary,
show_progress=show_progress,
weights_col=weights_col,
robust=robust,
initial_point=initial_point,
formula=formula,
fit_options=fit_options,
)

# Add the results to the AnnData object
if inplace:
_regression_model_populate_adata(adata, weibull_aft.summary, key_added_prefix)

def log_logistic_aft(adata: AnnData, duration_col: str, event_col: str, entry_col: str = None) -> LogLogisticAFTFitter:
return weibull_aft


def log_logistic_aft(
adata: AnnData,
duration_col: str,
*,
inplace: bool = True,
key_added_prefix: str | None = None,
alpha: float = 0.05,
fit_intercept: bool = True,
penalizer: float | np.ndarray = 0.0,
l1_ratio: float = 0.0,
model_ancillary: bool = False,
event_col: str | None = None,
ancillary: bool | pd.DataFrame | str | None = None,
show_progress: bool = False,
weights_col: str | None = None,
robust: bool = False,
initial_point=None,
entry_col: str | None = None,
formula: str | None = None,
fit_options: dict | None = None,
) -> LogLogisticAFTFitter:
"""Fit the log logistic accelerated failure time regression for the survival function.
The Log-Logistic Accelerated Failure Time (AFT) survival regression model is a powerful statistical tool employed in the analysis of time-to-event data.
This model operates under the assumption that the logarithm of survival time adheres to a log-logistic distribution, offering a flexible framework for understanding the impact of covariates on survival times.
Expand All @@ -431,9 +612,29 @@ def log_logistic_aft(adata: AnnData, duration_col: str, event_col: str, entry_co
Args:
adata: AnnData object with necessary columns `duration_col` and `event_col`.
duration_col: Name of the column in the AnnData objects that contains the subjects’ lifetimes.
event_col: Name of the column in anndata that contains the subjects’ death observation.
inplace: Whether to modify the AnnData object in place.
key_added_prefix: Prefix to add to the column names in the AnnData object. An underscore will be added between the prefix and the column
alpha: The alpha value in the confidence intervals.
alpha: The alpha value in the confidence intervals.
fit_intercept: Whether to fit an intercept term in the model.
penalizer: Attach a penalty to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates.
l1_ratio: Specify what ratio to assign to a L1 vs L2 penalty. Same as scikit-learn. See penalizer above.
model_ancillary: set the model instance to always model the ancillary parameter with the supplied Dataframe. This is useful for grid-search optimization.
event_col: Name of the column in anndata that contains the subjects’ death observation. 1 if observed, 0 else (censored).
If left as None, assume all individuals are uncensored.
ancillary: Choose to model the ancillary parameters.
If None or False, explicitly do not fit the ancillary parameters using any covariates.
If True, model the ancillary parameters with the same covariates as ``df``.
If DataFrame, provide covariates to model the ancillary parameters. Must be the same row count as ``df``.
If str, should be a formula
show_progress: since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing.
weights_col: The name of the column in DataFrame that contains the weights for each subject.
robust: Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ.
initial_point: set the starting point for the iterative solver.
entry_col: Column denoting when a subject entered the study, i.e. left-truncation.
formula: Use an R-style formula for modeling the dataset. See formula syntax: https://matthewwardrop.github.io/formulaic/basic/grammar/
If a formula is not provided, all variables in the dataframe are used (minus those used for other purposes like event_col, etc.)
fit_options: Additional keyword arguments to pass into the estimator.

Returns:
Fitted LogLogisticAFTFitter.
Expand All @@ -443,12 +644,39 @@ def log_logistic_aft(adata: AnnData, duration_col: str, event_col: str, entry_co
>>> adata = ep.dt.mimic_2(encoded=False)
>>> # Flip 'censor_fl' because 0 = death and 1 = censored
>>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0)
>>> llf = ep.tl.log_logistic_aft(adata, "mort_day_censored", "censor_flg")
>>> adata = adata[:, ["mort_day_censored", "censor_flg"]]
>>> llf = ep.tl.log_logistic_aft(adata, duration_col="mort_day_censored", event_col="censor_flg")
"""
return _regression_model(
LogLogisticAFTFitter, adata, duration_col, event_col, entry_col, accept_zero_duration=False
df = _regression_model_data_frame_preparation(adata, duration_col, accept_zero_duration=False)

log_logistic_aft = LogLogisticAFTFitter(
alpha=alpha,
fit_intercept=fit_intercept,
penalizer=penalizer,
l1_ratio=l1_ratio,
model_ancillary=model_ancillary,
)

log_logistic_aft.fit(
df,
duration_col=duration_col,
event_col=event_col,
entry_col=entry_col,
ancillary=ancillary,
show_progress=show_progress,
weights_col=weights_col,
robust=robust,
initial_point=initial_point,
formula=formula,
fit_options=fit_options,
)

# Add the results to the AnnData object
if inplace:
_regression_model_populate_adata(adata, log_logistic_aft.summary, key_added_prefix)

return log_logistic_aft


def _univariate_model(
adata: AnnData,
Expand Down
2 changes: 1 addition & 1 deletion tests/tools/test_sa.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ def _sa_function_assert(self, model, model_class):
def _sa_func_test(self, sa_function, sa_class, mimic_2_sa):
adata, duration_col, event_col = mimic_2_sa

sa = sa_function(adata, duration_col, event_col)
sa = sa_function(adata, duration_col=duration_col, event_col=event_col)
self._sa_function_assert(sa, sa_class)

def test_kmf(self, mimic_2_sa):
Expand Down
Loading