Skip to content

theadityasurana/Data-Analytics-Cascade-Cup

 
 

Repository files navigation

Team Neural Demons Submissions

Cascade Cup '22, organized by Consulting and Analytics club, IIT Guwahati, consisted of 3 rounds - ML Quiz, ML Hackathon, Data Analysis Report. In this repository, we have uploaded our submissions - the notebook which we submitted for Data Analysis round and the Report used in the last round.

ML Hackathon:

https://www.kaggle.com/c/cascade-cup-22/overview

In this repo: https://github.com/yash-shimpi/Cascade-Cup-Neural-Demons/blob/main/notebook.ipynb

It consisted of an unbalanced dataset of 450,000 rows with 97:3 being the ratio of non-cancelled data to cancelled data of delivery orders. Most significant improvement was brought by the Class Weights method as it penalised more if got the minority data prediction wrong. Along with that, effective EDA alongwith some data manipulation led us to AUC-ROC score of 0.81 and 0.83 on public and private leaderboards respectively.

Data Analysis Report:

In this repo: https://github.com/yash-shimpi/Cascade-Cup-Neural-Demons/blob/main/Team%20Neural%20Demons.pdf

Problem statement stated to prepare a report analyzing the data we had been given. Using various MatPlotLib methods, explored relations between cancellation and various other factors given in the data. Essentially divided into 3 sub reports, rider analysis, order analysis, rider-order analysis.

About

Team Neural Demons Cascade Cup '22 Submission repository

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%