-
Notifications
You must be signed in to change notification settings - Fork 92
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
138 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
|
||
import torch | ||
|
||
import ttnn | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc | ||
from models.utility_functions import torch_random | ||
import math | ||
|
||
parameters = { | ||
"dtype": [ttnn.int32, ttnn.bfloat16, ttnn.bfloat8_b], | ||
"height": [4, 8, 12, 16, 32, 64, 96, 128, 256, 512, 1024, 4096, 8192, 8196], | ||
"width": [4, 8, 12, 16, 32, 64, 96, 128, 256, 512, 1024, 4096, 8192, 8196], | ||
"layout": [ttnn.TILE_LAYOUT, ttnn.ROW_MAJOR_LAYOUT], | ||
"input_shard_orientation": [ttnn.ShardOrientation.ROW_MAJOR, ttnn.ShardOrientation.COL_MAJOR], | ||
"input_num_cores_x": [1, 2, 4, 8], | ||
"input_num_cores_y": [1, 2, 4, 8], | ||
"input_shard_strategy": [ttnn.ShardStrategy.HEIGHT, ttnn.ShardStrategy.WIDTH], | ||
"output_shard_orientation": [ttnn.ShardOrientation.ROW_MAJOR, ttnn.ShardOrientation.COL_MAJOR], | ||
"output_num_cores_x": [1, 2, 4, 8], | ||
"output_num_cores_y": [1, 2, 4, 8], | ||
"output_shard_strategy": [ttnn.ShardStrategy.HEIGHT, ttnn.ShardStrategy.WIDTH], | ||
} | ||
|
||
|
||
def invalid_shard_spec( | ||
layout, | ||
height, | ||
width, | ||
device, | ||
num_cores_x, | ||
num_cores_y, | ||
shard_strategy, | ||
) -> bool: | ||
if shard_strategy == ttnn.ShardStrategy.HEIGHT: | ||
dim_being_distributed = float(height) | ||
elif shard_strategy == ttnn.ShardStrategy.WIDTH: | ||
dim_being_distributed = float(width) | ||
|
||
num_cores = num_cores_x * num_cores_y | ||
size_per_core = math.ceil(dim_being_distributed, num_cores) | ||
if (size_per_core == 0 and layout == ttnn.ROW_MAJOR_LAYOUT) or (size_per_core < 32 and layout == ttnn.TILE_LAYOUT): | ||
return True | ||
|
||
full_grid = device.compute_with_storage_grid_size() | ||
if num_cores_x >= full_grid.x or num_cores_y >= full_grid.y: | ||
return True | ||
|
||
return False | ||
|
||
|
||
def skip( | ||
*, | ||
layout, | ||
height, | ||
width, | ||
device, | ||
input_num_cores_x, | ||
input_num_cores_y, | ||
input_shard_strategy, | ||
output_num_cores_x, | ||
output_num_cores_y, | ||
output_shard_strategy, | ||
**_, | ||
) -> Tuple[bool, Optional[str]]: | ||
if invalid_shard_spec(layout, height, width, device, input_num_cores_x, input_num_cores_y, input_shard_strategy): | ||
return True, "Invalid Input Shard Spec" | ||
|
||
if invalid_shard_spec(layout, height, width, device, output_num_cores_x, output_num_cores_y, output_shard_strategy): | ||
return True, "Invalid Output Shard Spec" | ||
|
||
return False, None | ||
|
||
|
||
def skip(**_) -> Tuple[bool, Optional[str]]: | ||
return False, None | ||
|
||
|
||
def is_expected_to_fail(**_) -> Tuple[bool, Optional[str]]: | ||
return False, None | ||
|
||
|
||
def run( | ||
dtype, | ||
height, | ||
width, | ||
layout, | ||
input_shard_orientation, | ||
input_num_cores_x, | ||
input_num_cores_y, | ||
input_shard_strategy, | ||
output_shard_orientation, | ||
output_num_cores_x, | ||
output_num_cores_y, | ||
output_shard_strategy, | ||
*, | ||
device, | ||
) -> Tuple[bool, Optional[str]]: | ||
tensor_shape = [1, 1, height, width] | ||
input_core_grid = ttnn.CoreGrid(y=input_num_cores_y, x=input_num_cores_x) | ||
output_core_grid = ttnn.CoreGrid(y=output_num_cores_y, x=output_num_cores_x) | ||
input_args = dict( | ||
shape=tensor_shape, | ||
core_grid=input_core_grid, | ||
strategy=input_shard_strategy, | ||
orientation=input_shard_orientation, | ||
) | ||
output_args = dict( | ||
shape=tensor_shape, | ||
core_grid=output_core_grid, | ||
strategy=output_shard_strategy, | ||
orientation=output_shard_orientation, | ||
) | ||
|
||
torch_input_tensor = torch.randn(tensor_shape, dtype=torch.float32) | ||
interleaved_input_tensor = ttnn.from_torch( | ||
torch_input_tensor, layout=layout, dtype=dtype, device=device, memory_config=ttnn.DRAM_MEMORY_CONFIG | ||
) | ||
input_shard_memory_config = ttnn.create_sharded_memory_config(tensor_shape, **input_args) | ||
output_shard_memory_config = ttnn.create_sharded_memory_config(tensor_shape, **output_args) | ||
|
||
# interleaved_to_sharded | ||
sharded_input_tensor = ttnn.to_memory_config(interleaved_input_tensor, input_shard_memory_config) | ||
|
||
# reshard | ||
sharded_output_tensor = ttnn.to_memory_config(sharded_input_tensor, output_shard_memory_config) | ||
|
||
# sharded_to_interleaved | ||
interleaved_output_tensor = ttnn.to_memory_config(sharded_output_tensor, ttnn.DRAM_MEMORY_CONFIG) | ||
|
||
output = ttnn.to_torch(interleaved_output_tensor) | ||
|
||
return check_with_pcc(torch_input_tensor, output, 0.999) |