-
Notifications
You must be signed in to change notification settings - Fork 90
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#9208: Functional SqueezeBERT model Demo
- Loading branch information
1 parent
29792c0
commit e1b5527
Showing
9 changed files
with
1,450 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
# SqueezeBERT demo | ||
|
||
Demo showcasing SqueezeBERT running on Grayskull - e150 and Wormhole - n150, n300 using ttnn. | ||
|
||
## Introduction | ||
SqueezeBERT is a bidirectional transformer similar to the BERT model. The key difference between the BERT architecture and the SqueezeBERT architecture is that SqueezeBERT uses grouped convolutions instead of fully-connected layers for the Q, K, V and FFN layers. | ||
|
||
|
||
## Details | ||
The entry point to functional_squeezebert model is squeezebert_for_question_answering in `models/demos/squeezebert/tt/ttnn_functional_squeezebert.py`. The model picks up certain configs and weights from huggingface pretrained model. We have used `squeezebert/squeezebert-uncased` version from huggingface as our reference. | ||
|
||
### Sequence Size: 384 | ||
Sequence size determines the maximum length of input sequences processed by the model, optimizing performance and compatibility. It's recommended to set the sequence_size to 384 | ||
|
||
### Batch size: 8 | ||
Batch Size determines the number of input sequences processed simultaneously during training or inference, impacting computational efficiency and memory usage. It's recommended to set the batch_size to 8 | ||
|
||
## How to Run | ||
|
||
Use `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo[models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-models/demos/squeezebert/demo/input_data.json-device_params0]` to run the demo. | ||
|
||
If you wish to run the demo with a different input use `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo[models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-<path_to_input_file>-device_params0]`. This file is expected to have exactly 8 inputs. | ||
|
||
Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo_squadv2[3-models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-device_params0]`. | ||
|
||
If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/demos/squeezebert/demo/demo.py::test_demo_squadv2[<n_iterations>-models.demos.squeezebert.tt.ttnn_functional_squeezebert-squeezebert/squeezebert-uncased-device_params0]` | ||
|
||
|
||
## Inputs | ||
The demo receives inputs from respective `input_data.json` by default. To modify the inputs or specify a different path, adjust the input_path parameter in the command accordingly. It's recommended to avoid direct modifications to the input_data.json file. | ||
|
||
|
||
### Owner: [kkeerthana0573](https://github.com/kkeerthana0573) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,301 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import ttnn | ||
import json | ||
import torch | ||
import pytest | ||
import evaluate | ||
|
||
from loguru import logger | ||
from ttnn.model_preprocessing import * | ||
from models.utility_functions import ( | ||
profiler, | ||
skip_for_wormhole_b0, | ||
disable_compilation_reports, | ||
disable_persistent_kernel_cache, | ||
) | ||
from ttnn.model_preprocessing import preprocess_model_parameters | ||
from models.demos.squeezebert.tt import ttnn_functional_squeezebert | ||
from models.datasets.dataset_squadv2 import squadv2_1K_samples_input, squadv2_answer_decode_batch | ||
|
||
from transformers import SqueezeBertForQuestionAnswering, pipeline, SqueezeBertTokenizer | ||
|
||
|
||
def load_inputs(input_path, batch): | ||
with open(input_path) as f: | ||
input_data = json.load(f) | ||
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries." | ||
|
||
context = [] | ||
question = [] | ||
for i in range(batch): | ||
context.append(input_data[i]["context"]) | ||
question.append(input_data[i]["question"]) | ||
|
||
return context, question | ||
|
||
|
||
def positional_ids(config, input_ids, past_key_values_length=0): | ||
seq_length = input_ids.size(1) | ||
position_ids = torch.arange(config.max_position_embeddings, dtype=torch.long, device=input_ids.device) | ||
position_ids = position_ids.unsqueeze(0)[:, past_key_values_length : seq_length + past_key_values_length] | ||
position_ids = position_ids.expand_as(input_ids) | ||
|
||
return position_ids | ||
|
||
|
||
def run_squeezebert_question_and_answering_inference( | ||
device, | ||
use_program_cache, | ||
model_name, | ||
batch_size, | ||
sequence_size, | ||
squeezebert, | ||
input_path, | ||
): | ||
disable_persistent_kernel_cache() | ||
|
||
hugging_face_reference_model = SqueezeBertForQuestionAnswering.from_pretrained(model_name, torchscript=False) | ||
hugging_face_reference_model.eval() | ||
state_dict = hugging_face_reference_model.state_dict() | ||
|
||
tokenizer = SqueezeBertTokenizer.from_pretrained(model_name) | ||
config = hugging_face_reference_model.config | ||
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer) | ||
|
||
tt_model_name = f"ttnn_{model_name}" | ||
|
||
def convert_to_ttnn(model, name): | ||
return not isinstance(model, torch.nn.Conv1d) | ||
|
||
profiler.start(f"preprocessing_parameter") | ||
parameters = preprocess_model_parameters( | ||
model_name=tt_model_name, | ||
initialize_model=lambda: hugging_face_reference_model, | ||
convert_to_ttnn=convert_to_ttnn, | ||
custom_preprocessor=squeezebert.custom_preprocessor, | ||
device=device, | ||
) | ||
profiler.end(f"preprocessing_parameter") | ||
|
||
context, question = load_inputs(input_path, batch_size) | ||
|
||
preprocess_params, _, postprocess_params = nlp._sanitize_parameters() | ||
preprocess_params["max_seq_len"] = sequence_size | ||
inputs = nlp._args_parser({"context": context, "question": question}) | ||
|
||
preprocessed_inputs = [] | ||
for i in range(batch_size): | ||
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params)) | ||
|
||
single_input = { | ||
"example": model_input["example"], | ||
"inputs": model_input, | ||
} | ||
preprocessed_inputs.append(single_input) | ||
|
||
squeezebert_input = tokenizer.batch_encode_plus( | ||
zip(question, context), | ||
max_length=sequence_size, | ||
padding="max_length", | ||
truncation=True, | ||
return_attention_mask=True, | ||
return_token_type_ids=True, | ||
return_tensors="pt", | ||
) | ||
|
||
profiler.start(f"preprocessing_input") | ||
position_ids = positional_ids(config, squeezebert_input.input_ids) | ||
ttnn_squeezebert_inputs = squeezebert.preprocess_inputs( | ||
squeezebert_input["input_ids"], | ||
squeezebert_input["token_type_ids"], | ||
position_ids, | ||
squeezebert_input["attention_mask"], | ||
device=device, | ||
) | ||
profiler.end(f"preprocessing_input") | ||
|
||
profiler.start(f"inference_time") | ||
tt_output = squeezebert.squeezebert_for_question_answering( | ||
config, | ||
*ttnn_squeezebert_inputs, | ||
state_dict=state_dict, | ||
base_addr=f"transformer.", | ||
parameters=parameters, | ||
device=device, | ||
reader_patterns_cache=None, | ||
) | ||
profiler.end(f"inference_time") | ||
|
||
tt_output = ttnn.to_torch(ttnn.from_device(tt_output)).reshape(batch_size, 1, sequence_size, -1).to(torch.float32) | ||
|
||
tt_start_logits = tt_output[..., :, 0].squeeze(1) | ||
tt_end_logits = tt_output[..., :, 1].squeeze(1) | ||
|
||
model_answers = {} | ||
profiler.start("post_processing_output_to_string") | ||
for i in range(batch_size): | ||
tt_res = { | ||
"start": tt_start_logits[i], | ||
"end": tt_end_logits[i], | ||
"example": preprocessed_inputs[i]["example"], | ||
**preprocessed_inputs[i]["inputs"], | ||
} | ||
tt_answer = nlp.postprocess([tt_res], **postprocess_params) | ||
|
||
logger.info(f"answer: {tt_answer['answer']}\n") | ||
model_answers[i] = tt_answer["answer"] | ||
|
||
profiler.end("post_processing_output_to_string") | ||
|
||
measurements = { | ||
"preprocessing_parameter": profiler.get("preprocessing_parameter"), | ||
"preprocessing_input": profiler.get("preprocessing_input"), | ||
"inference_time": profiler.get("inference_time"), | ||
"post_processing": profiler.get("post_processing_output_to_string"), | ||
} | ||
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s") | ||
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s") | ||
logger.info(f"inference_time: {measurements['inference_time']} s") | ||
logger.info(f"post_processing : {measurements['post_processing']} s") | ||
|
||
return measurements | ||
|
||
|
||
def run_squeezebert_question_and_answering_inference_squad_v2( | ||
device, | ||
use_program_cache, | ||
model_name, | ||
batch_size, | ||
sequence_size, | ||
squeezebert, | ||
n_iterations, | ||
): | ||
disable_persistent_kernel_cache() | ||
|
||
hugging_face_reference_model = SqueezeBertForQuestionAnswering.from_pretrained(model_name, torchscript=False) | ||
hugging_face_reference_model.eval() | ||
state_dict = hugging_face_reference_model.state_dict() | ||
|
||
tokenizer = SqueezeBertTokenizer.from_pretrained(model_name) | ||
config = hugging_face_reference_model.config | ||
tt_model_name = ttnn_functional_squeezebert | ||
|
||
parameters = preprocess_model_parameters( | ||
model_name=tt_model_name, | ||
initialize_model=lambda: hugging_face_reference_model, | ||
custom_preprocessor=squeezebert.custom_preprocessor, | ||
device=device, | ||
) | ||
|
||
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer) | ||
|
||
attention_mask = True | ||
token_type_ids = True | ||
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size) | ||
squad_metric = evaluate.load("squad_v2") | ||
|
||
with torch.no_grad(): | ||
pred_labels = [] | ||
cpu_pred_labels = [] | ||
true_labels = [] | ||
i = 0 | ||
for batch in inputs_squadv2: | ||
if i < n_iterations: | ||
batch_data = batch[0] | ||
curr_batch_size = batch_data["input_ids"].shape[0] | ||
position_ids = positional_ids(config, batch_data.input_ids) | ||
ttnn_squeezebert_inputs = squeezebert.preprocess_inputs( | ||
batch_data["input_ids"], | ||
batch_data["token_type_ids"], | ||
position_ids, | ||
batch_data["attention_mask"], | ||
device=device, | ||
) | ||
|
||
tt_output = squeezebert.squeezebert_for_question_answering( | ||
config, | ||
*ttnn_squeezebert_inputs, | ||
state_dict=state_dict, | ||
base_addr=f"transformer.", | ||
parameters=parameters, | ||
device=device, | ||
reader_patterns_cache=None, | ||
) | ||
tt_output = ( | ||
ttnn.to_torch(ttnn.from_device(tt_output)) | ||
.reshape(batch_size, 1, sequence_size, -1) | ||
.to(torch.float32) | ||
) | ||
|
||
cpu_output = hugging_face_reference_model(**batch_data) | ||
references = batch[1] | ||
question = batch[2] | ||
context = batch[3] | ||
|
||
cpu_predictions, tt_predictions = squadv2_answer_decode_batch( | ||
hugging_face_reference_model, | ||
tokenizer, | ||
nlp, | ||
references, | ||
cpu_output, | ||
tt_output, | ||
curr_batch_size, | ||
question, | ||
context, | ||
) | ||
pred_labels.extend(tt_predictions) | ||
cpu_pred_labels.extend(cpu_predictions) | ||
true_labels.extend(references) | ||
|
||
del tt_output | ||
i += 1 | ||
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels) | ||
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels) | ||
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}") | ||
# logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}") | ||
|
||
|
||
@pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True) | ||
@pytest.mark.parametrize( | ||
"model_name, input_loc", | ||
((["squeezebert/squeezebert-uncased", "models/demos/squeezebert/demo/input_data.json"]),), | ||
) | ||
@pytest.mark.parametrize("squeezebert", [ttnn_functional_squeezebert]) | ||
def test_demo(input_loc, model_name, squeezebert, device, use_program_cache, reset_seeds): | ||
disable_persistent_kernel_cache() | ||
disable_compilation_reports() | ||
|
||
return run_squeezebert_question_and_answering_inference( | ||
device=device, | ||
use_program_cache=use_program_cache, | ||
model_name=model_name, | ||
batch_size=8, | ||
sequence_size=384, | ||
squeezebert=squeezebert, | ||
input_path=input_loc, | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True) | ||
@pytest.mark.parametrize("model_name", ["squeezebert/squeezebert-uncased"]) | ||
@pytest.mark.parametrize("squeezebert", [ttnn_functional_squeezebert]) | ||
@pytest.mark.parametrize( | ||
"n_iterations", | ||
((3),), | ||
) | ||
def test_demo_squadv2(model_name, squeezebert, n_iterations, device, use_program_cache, reset_seeds): | ||
disable_persistent_kernel_cache() | ||
disable_compilation_reports() | ||
|
||
return run_squeezebert_question_and_answering_inference_squad_v2( | ||
device=device, | ||
use_program_cache=use_program_cache, | ||
model_name=model_name, | ||
batch_size=8, | ||
sequence_size=384, | ||
squeezebert=squeezebert, | ||
n_iterations=n_iterations, | ||
) |
Oops, something went wrong.