-
Notifications
You must be signed in to change notification settings - Fork 92
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
### Ticket [Link to Github Issue](#11512) ### Problem description We need sweep tests testing how ops behave when input is sharded. ### What's changed Added sweep tests for multiple ops when input is sharded: isfinite isinf isnan isposinf isneginf lgamma mish logit ### Checklist - [X] Post commit CI passes (https://github.com/tenstorrent/tt-metal/actions/runs/12084077014) - [X] Sweep tests pass
- Loading branch information
1 parent
ab3dc0c
commit db8c8d4
Showing
22 changed files
with
1,186 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import os | ||
import ttnn | ||
import itertools | ||
import random | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import _gen_reshape_args_from_volume | ||
|
||
|
||
def gen_sharded_spec_unary(num_shapes, max_tensor_size=4 * 1024 * 1024, layouts=["TILE_LAYOUT", "ROW_MAJOR_LAYOUT"]): | ||
# device.compute_with_storage_grid_size() | ||
y = 8 | ||
x = 8 | ||
|
||
# ["BLOCK", "WIDTH", "HEIGHT", "tensor_wh"] | ||
sharding_strategy_list = ["BLOCK", "WIDTH", "HEIGHT", "tensor_wh"] | ||
shard_orientation_list = ["COL_MAJOR", "ROW_MAJOR"] | ||
spec_list = [] | ||
|
||
for sharding_strategy, shard_orientation, rank, layout in itertools.product( | ||
sharding_strategy_list, shard_orientation_list, [4, 3, 2], layouts | ||
): | ||
if sharding_strategy == "tensor_wh": | ||
tensor_hw_as_shard_shape = True | ||
sharding_strategy = "BLOCK" | ||
else: | ||
tensor_hw_as_shard_shape = False | ||
|
||
for _ in range(num_shapes): | ||
if tensor_hw_as_shard_shape: | ||
# Gets stuck: | ||
# X 8 Y 8 input_shape [1, 17792, 8] DataType.BFLOAT8_B Layout.TILE ShardStrategy.BLOCK ShardOrientation.COL_MAJOR tensor_hw_as_shard_shape True | ||
|
||
if layout == "TILE_LAYOUT": | ||
# In shard mode ShardMode::PHYSICAL, physical shard shape {12, 13312} is not compatible with alignment Alignment([32, 32])! | ||
min_shard_size_x = 32 | ||
min_shard_size_y = 32 | ||
else: # if layout == "ROW_MAJOR_LAYOUT": | ||
# Shard Size must be multiple of input_tile_size (width * height is multiple of 1024) | ||
min_shard_size_x = random.choice([1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]) | ||
min_shard_size_y = 1024 // min_shard_size_x | ||
|
||
rest_volume = random.randint(1, max_tensor_size // (min_shard_size_x * min_shard_size_y * x * y)) | ||
input_shape = random.choice(_gen_reshape_args_from_volume(rest_volume, step=1, out_dims=rank)) | ||
input_shape = list(input_shape["reshape_dims"]) | ||
input_shape[-2] = input_shape[-2] * min_shard_size_x | ||
input_shape[-1] = input_shape[-1] * min_shard_size_y | ||
|
||
# Shard width should be multiple of 16 to satisfy L1 alignment (width = multiple 8 for bfloat16) | ||
while input_shape[-1] % 16 != 0: | ||
input_shape[-1] *= 2 | ||
input_shape[-2] //= 2 | ||
|
||
if shard_orientation == "COL_MAJOR": | ||
tmp = input_shape[-2] | ||
input_shape[-2] = input_shape[-1] | ||
input_shape[-1] = tmp | ||
|
||
elif sharding_strategy == "BLOCK": | ||
min_shard_size_y = 32 * y | ||
min_shard_size_x = 32 * x | ||
|
||
rest_volume = random.randint(1, max_tensor_size // (min_shard_size_x * min_shard_size_y)) | ||
physical_shape = random.choice(_gen_reshape_args_from_volume(rest_volume, step=1, out_dims=2)) | ||
physical_shape = list(physical_shape["reshape_dims"]) | ||
physical_shape[1] *= min_shard_size_y | ||
physical_shape[0] *= min_shard_size_x | ||
|
||
input_shape = random.choice(_gen_reshape_args_from_volume(physical_shape[0], step=1, out_dims=rank - 1)) | ||
input_shape = list(input_shape["reshape_dims"]) | ||
input_shape.append(physical_shape[1]) | ||
|
||
elif sharding_strategy == "WIDTH" or sharding_strategy == "HEIGHT": | ||
# if shard_width % total_cores != 0: raise RuntimeError("Invalid sharding core_grid") | ||
# Shard Size must be multiple of input_tile_size | ||
|
||
if layout == "TILE_LAYOUT": | ||
# In shard mode ShardMode::PHYSICAL, physical shard shape {12, 13312} is not compatible with alignment Alignment([32, 32])! | ||
min_shard_size_x = 32 | ||
min_shard_size_y = 32 * x * y | ||
else: # if layout == "ROW_MAJOR_LAYOUT": | ||
# Shard Size must be multiple of input_tile_size | ||
# Shard width should be multiple of 16 to satisfy L1 alignment | ||
mul_32_y = random.choice([16, 32, 64, 128, 256, 512, 1024]) | ||
mul_32_x = 1024 // mul_32_y | ||
|
||
if sharding_strategy == "HEIGHT": | ||
# Shard width should be multiple of 16 to satisfy L1 alignment | ||
while mul_32_x % 16 != 0: | ||
mul_32_x *= 2 | ||
mul_32_y //= 2 | ||
|
||
min_shard_size_x = mul_32_x | ||
min_shard_size_y = mul_32_y * x * y | ||
|
||
rest_volume = random.randint(1, max_tensor_size // (min_shard_size_x * min_shard_size_y)) | ||
input_shape = random.choice(_gen_reshape_args_from_volume(rest_volume, step=1, out_dims=rank)) | ||
input_shape = list(input_shape["reshape_dims"]) | ||
input_shape[-2] = input_shape[-2] * min_shard_size_x | ||
input_shape[-1] = input_shape[-1] * min_shard_size_y | ||
|
||
if sharding_strategy == "HEIGHT": | ||
tmp = input_shape[-2] | ||
input_shape[-2] = input_shape[-1] | ||
input_shape[-1] = tmp | ||
|
||
# print(input_shape) | ||
|
||
spec_list.append( | ||
{ | ||
"input_shape": input_shape, | ||
"X": x, | ||
"Y": y, | ||
"sharding_strategy": sharding_strategy, | ||
"shard_orientation": shard_orientation, | ||
"tensor_hw_as_shard_shape": tensor_hw_as_shard_shape, | ||
"input_layout": layout, | ||
} | ||
) | ||
|
||
return spec_list | ||
|
||
|
||
def parse_sharding_spec(input_spec): | ||
input_shape = input_spec["input_shape"] | ||
X = input_spec["X"] | ||
Y = input_spec["Y"] | ||
sharding_strategy = input_spec["sharding_strategy"] | ||
shard_orientation = input_spec["shard_orientation"] | ||
tensor_hw_as_shard_shape = input_spec["tensor_hw_as_shard_shape"] | ||
input_layout = input_spec["input_layout"] | ||
|
||
if sharding_strategy == "HEIGHT": | ||
sharding_strategy = ttnn.ShardStrategy.HEIGHT | ||
elif sharding_strategy == "WIDTH": | ||
sharding_strategy = ttnn.ShardStrategy.WIDTH | ||
else: # sharding_strategy == "BLOCK": | ||
sharding_strategy = ttnn.ShardStrategy.BLOCK | ||
|
||
if shard_orientation == "COL_MAJOR": | ||
shard_orientation = ttnn.ShardOrientation.COL_MAJOR | ||
else: | ||
shard_orientation = ttnn.ShardOrientation.ROW_MAJOR | ||
|
||
if input_layout == "TILE_LAYOUT": | ||
input_layout = ttnn.TILE_LAYOUT | ||
else: | ||
input_layout = ttnn.ROW_MAJOR_LAYOUT | ||
|
||
return ( | ||
input_shape, | ||
ttnn.CoreGrid(y=Y, x=X), | ||
sharding_strategy, | ||
shard_orientation, | ||
tensor_hw_as_shard_shape, | ||
input_layout, | ||
) |
File renamed without changes.
102 changes: 102 additions & 0 deletions
102
tests/sweep_framework/sweeps/eltwise/unary/isfinite/isfinite_sharded.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import json | ||
import torch | ||
import random | ||
import ttnn | ||
import math | ||
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm | ||
from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 120 | ||
|
||
random.seed(0) | ||
|
||
|
||
# Parameters provided to the test vector generator are defined here. | ||
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. | ||
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. | ||
# Developers can create their own generator functions and pass them to the parameters as inputs. | ||
parameters = { | ||
"nightly": { | ||
"input_spec": gen_sharded_spec_unary(16, layouts=["TILE_LAYOUT"]), | ||
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], | ||
}, | ||
} | ||
|
||
|
||
# Invalidate vector is called during the generation phase where each vector will be passed in. | ||
# If invalidated, the vector will still be stored but will be skipped. | ||
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. | ||
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: | ||
input_shape, X, Y, sharding_strategy, _, _, input_layout = test_vector["input_spec"].values() | ||
pre_sharded_height = math.prod(input_shape[:-1]) | ||
pre_sharded_width = input_shape[-1] | ||
|
||
if input_layout == "ROW_MAJOR_LAYOUT" and test_vector["input_a_dtype"] == ttnn.bfloat8_b: | ||
return True, "bfloat8_b is only supported on tiled layout" | ||
|
||
return False, None | ||
|
||
|
||
# This is the run instructions for the test, defined by the developer. | ||
# The run function must take the above-defined parameters as inputs. | ||
# The runner will call this run function with each test vector, and the returned results from this function will be stored. | ||
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. | ||
def run( | ||
input_spec, | ||
input_a_dtype, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
( | ||
input_shape, | ||
core_grid, | ||
sharding_strategy, | ||
shard_orientation, | ||
tensor_hw_as_shard_shape, | ||
input_layout, | ||
) = parse_sharding_spec(input_spec) | ||
|
||
if input_layout == ttnn.ROW_MAJOR_LAYOUT: | ||
input_shape = sanitize_shape_rm(input_shape) | ||
|
||
torch_input_tensor_a = gen_rand_inf(input_shape, low=-100, high=100) | ||
torch_output_tensor = torch.isfinite(torch_input_tensor_a) | ||
|
||
sharded_config = ttnn.create_sharded_memory_config_( | ||
shape=input_shape, | ||
core_grid=core_grid, | ||
strategy=sharding_strategy, | ||
orientation=shard_orientation, | ||
use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, | ||
) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_layout, | ||
device=device, | ||
memory_config=sharded_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
output_tensor = ttnn.isfinite(input_tensor_a, memory_config=sharded_config) | ||
e2e_perf = stop_measuring_time(start_time) | ||
output_tensor = ttnn.to_torch(output_tensor) | ||
|
||
pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) | ||
return [pcc, e2e_perf] |
File renamed without changes.
102 changes: 102 additions & 0 deletions
102
tests/sweep_framework/sweeps/eltwise/unary/isinf/isinf_sharded.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import json | ||
import torch | ||
import random | ||
import ttnn | ||
import math | ||
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm | ||
from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 120 | ||
|
||
random.seed(0) | ||
|
||
|
||
# Parameters provided to the test vector generator are defined here. | ||
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. | ||
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. | ||
# Developers can create their own generator functions and pass them to the parameters as inputs. | ||
parameters = { | ||
"nightly": { | ||
"input_spec": gen_sharded_spec_unary(16, layouts=["TILE_LAYOUT"]), | ||
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], | ||
}, | ||
} | ||
|
||
|
||
# Invalidate vector is called during the generation phase where each vector will be passed in. | ||
# If invalidated, the vector will still be stored but will be skipped. | ||
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. | ||
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: | ||
input_shape, X, Y, sharding_strategy, _, _, input_layout = test_vector["input_spec"].values() | ||
pre_sharded_height = math.prod(input_shape[:-1]) | ||
pre_sharded_width = input_shape[-1] | ||
|
||
if input_layout == "ROW_MAJOR_LAYOUT" and test_vector["input_a_dtype"] == ttnn.bfloat8_b: | ||
return True, "bfloat8_b is only supported on tiled layout" | ||
|
||
return False, None | ||
|
||
|
||
# This is the run instructions for the test, defined by the developer. | ||
# The run function must take the above-defined parameters as inputs. | ||
# The runner will call this run function with each test vector, and the returned results from this function will be stored. | ||
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. | ||
def run( | ||
input_spec, | ||
input_a_dtype, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
( | ||
input_shape, | ||
core_grid, | ||
sharding_strategy, | ||
shard_orientation, | ||
tensor_hw_as_shard_shape, | ||
input_layout, | ||
) = parse_sharding_spec(input_spec) | ||
|
||
if input_layout == ttnn.ROW_MAJOR_LAYOUT: | ||
input_shape = sanitize_shape_rm(input_shape) | ||
|
||
torch_input_tensor_a = gen_rand_inf(input_shape, low=-100, high=100) | ||
torch_output_tensor = torch.isinf(torch_input_tensor_a) | ||
|
||
sharded_config = ttnn.create_sharded_memory_config_( | ||
shape=input_shape, | ||
core_grid=core_grid, | ||
strategy=sharding_strategy, | ||
orientation=shard_orientation, | ||
use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, | ||
) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_layout, | ||
device=device, | ||
memory_config=sharded_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
output_tensor = ttnn.isinf(input_tensor_a, memory_config=sharded_config) | ||
e2e_perf = stop_measuring_time(start_time) | ||
output_tensor = ttnn.to_torch(output_tensor) | ||
|
||
pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) | ||
return [pcc, e2e_perf] |
File renamed without changes.
Oops, something went wrong.