-
Notifications
You must be signed in to change notification settings - Fork 87
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
464 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import pytest | ||
import math | ||
from typing import Union, Tuple | ||
|
||
import torch | ||
import torch.nn as nn | ||
import ttnn | ||
|
||
from tests.ttnn.utils_for_testing import assert_with_pcc | ||
from models.utility_functions import skip_for_wormhole_b0 | ||
|
||
|
||
TILE_WIDTH = 32 | ||
|
||
|
||
def get_shard_grid_from_num_cores(ncores: Union[int, Tuple[int, int]]) -> ttnn.experimental.tensor.CoreRangeSet: | ||
max_grid_size = (9, 12) ## (y, x) | ||
if isinstance(ncores, int): | ||
if ncores % max_grid_size[1] == 0: | ||
core_grid = ttnn.CoreGrid(y=ncores // max_grid_size[1], x=max_grid_size[1]) | ||
grid_coord = ttnn.experimental.tensor.CoreCoord(core_grid.x - 1, core_grid.y - 1) | ||
return ttnn.experimental.tensor.CoreRangeSet( | ||
{ttnn.experimental.tensor.CoreRange(ttnn.experimental.tensor.CoreCoord(0, 0), grid_coord)} | ||
) | ||
else: | ||
if ncores < max_grid_size[1]: | ||
core_grid = ttnn.CoreGrid(y=1, x=ncores) | ||
grid_coord = ttnn.experimental.tensor.CoreCoord(core_grid.x - 1, 0) | ||
return ttnn.experimental.tensor.CoreRangeSet( | ||
{ttnn.experimental.tensor.CoreRange(ttnn.experimental.tensor.CoreCoord(0, 0), grid_coord)} | ||
) | ||
else: | ||
core_grid_1 = ttnn.CoreGrid(y=ncores // max_grid_size[1], x=max_grid_size[1]) | ||
core_grid_2 = ttnn.CoreGrid(y=ncores // max_grid_size[1] + 1, x=ncores % max_grid_size[1]) | ||
grid_coord_1 = ttnn.experimental.tensor.CoreCoord(core_grid_1.x - 1, core_grid_1.y - 1) | ||
grid_coord_2 = ttnn.experimental.tensor.CoreCoord(core_grid_2.x - 1, core_grid_2.y - 1) | ||
return ttnn.experimental.tensor.CoreRangeSet( | ||
{ | ||
ttnn.experimental.tensor.CoreRange(ttnn.experimental.tensor.CoreCoord(0, 0), grid_coord_1), | ||
ttnn.experimental.tensor.CoreRange( | ||
ttnn.experimental.tensor.CoreCoord(0, grid_coord_2.y), grid_coord_2 | ||
), | ||
} | ||
) | ||
elif isinstance(ncores, tuple): | ||
ncores_h, ncores_w = ncores | ||
assert ncores_h <= max_grid_size[0] | ||
assert ncores_w <= max_grid_size[1] | ||
return ttnn.experimental.tensor.CoreRangeSet( | ||
{ | ||
ttnn.experimental.tensor.CoreRange( | ||
ttnn.experimental.tensor.CoreCoord(0, 0), | ||
ttnn.experimental.tensor.CoreCoord(ncores_w - 1, ncores_h - 1), | ||
) | ||
} | ||
) | ||
else: | ||
raise ValueError("Invalid ncores") | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"input_shape", | ||
[ | ||
[2, 8, 8, 640], | ||
[2, 16, 16, 640], | ||
[1, 16, 16, 640], | ||
[2, 8, 8, 1280], | ||
[2, 16, 16, 1280], | ||
], | ||
) | ||
@pytest.mark.parametrize( | ||
"shard_strategy", [ttnn.ShardStrategy.HEIGHT, ttnn.ShardStrategy.BLOCK, ttnn.ShardStrategy.WIDTH] | ||
) | ||
def test_silu_multi_core(device, input_shape, shard_strategy): | ||
## input shape is N C H W | ||
batch_size, height, width, num_channels = input_shape | ||
torch.manual_seed(0) | ||
input = torch.rand(input_shape, dtype=torch.bfloat16) | ||
|
||
torch_result = nn.functional.silu(input) | ||
|
||
tt_input = input | ||
num_bytes = 2 ## only BFLOAT16 is supported | ||
|
||
## calculate ncores, corresponding grid_size and in_shard_shape based on the input_shape | ||
ncores = None | ||
max_grid_size = (9, 12) ## (y, x) | ||
if shard_strategy == ttnn.ShardStrategy.HEIGHT: | ||
## nsticks per shard should be divisible by in_w | ||
max_nshards = min(batch_size * height, max_grid_size[0] * max_grid_size[1]) | ||
nshards = max_nshards | ||
while nshards > 0: | ||
if batch_size * height % nshards == 0: | ||
break | ||
nshards -= 1 | ||
ncores = nshards | ||
elif shard_strategy == ttnn.ShardStrategy.WIDTH: | ||
## nsticks per shard should be divisible by in_w | ||
max_nshards_w = min(num_channels, max_grid_size[1]) | ||
nshards_w = max_nshards_w | ||
while nshards_w > 0: | ||
## make sure: 1. nshards_w divides num_channels, and 2. shard_shape[1] is aligned to 32B | ||
if num_channels % nshards_w == 0 and math.ceil(num_channels * num_bytes / nshards_w) % TILE_WIDTH == 0: | ||
break | ||
nshards_w -= 1 | ||
ncores = nshards_w | ||
elif shard_strategy == ttnn.ShardStrategy.BLOCK: | ||
max_nshards_h = min(batch_size * height, max_grid_size[0]) ## height along NHW | ||
max_nshards_w = min(num_channels, max_grid_size[1]) ## width along C | ||
## find nshards_h along NHW | ||
nshards_h = max_nshards_h | ||
while nshards_h > 0: | ||
if batch_size * height % nshards_h == 0: | ||
break | ||
nshards_h -= 1 | ||
## find nshards_w along C | ||
nshards_w = max_nshards_w | ||
while nshards_w > 0: | ||
## make sure: 1. nshards_w divides num_channels, and 2. shard_shape[1] is aligned to 32B | ||
if num_channels % nshards_w == 0 and math.ceil(num_channels * num_bytes / nshards_w) % TILE_WIDTH == 0: | ||
break | ||
nshards_w -= 1 | ||
if nshards_w == 0 or nshards_h == 0: | ||
raise ValueError("nshards_h or nshards_w is 0") | ||
ncores = (nshards_h, nshards_w) | ||
|
||
shard_grid = get_shard_grid_from_num_cores(ncores) | ||
shard_orientation = ttnn.experimental.tensor.ShardOrientation.ROW_MAJOR | ||
|
||
if shard_strategy == ttnn.ShardStrategy.BLOCK: | ||
tensor_memory_layout = ttnn.types.TensorMemoryLayout.BLOCK_SHARDED | ||
elif shard_strategy == ttnn.ShardStrategy.HEIGHT: | ||
tensor_memory_layout = ttnn.types.TensorMemoryLayout.HEIGHT_SHARDED | ||
elif shard_strategy == ttnn.ShardStrategy.WIDTH: | ||
tensor_memory_layout = ttnn.types.TensorMemoryLayout.WIDTH_SHARDED | ||
|
||
## input shard | ||
if shard_strategy == ttnn.ShardStrategy.BLOCK: | ||
shard_height = math.ceil(batch_size * height * width / ncores[0]) | ||
shard_width = math.ceil(num_channels / ncores[1]) | ||
elif shard_strategy == ttnn.ShardStrategy.HEIGHT: | ||
shard_height = math.ceil(batch_size * height * width / ncores) | ||
shard_width = num_channels | ||
elif shard_strategy == ttnn.ShardStrategy.WIDTH: | ||
shard_height = math.ceil(batch_size * height * width) | ||
shard_width = math.ceil(num_channels / ncores) | ||
shard_shape = (shard_height, shard_width) | ||
|
||
shard_spec = ttnn.experimental.tensor.ShardSpec(shard_grid, shard_shape, shard_orientation, False) | ||
in_sharded_mem_config = ttnn.MemoryConfig(tensor_memory_layout, ttnn.types.BufferType.L1, shard_spec) | ||
|
||
## output shard | ||
shard_shape = (shard_height, shard_width) | ||
shard_spec = ttnn.experimental.tensor.ShardSpec(shard_grid, shard_shape, shard_orientation, False) | ||
|
||
input_tensor = ttnn.from_torch(tt_input, device=device, memory_config=ttnn.L1_MEMORY_CONFIG) | ||
input_tensor = ttnn.to_memory_config(input_tensor, memory_config=in_sharded_mem_config) | ||
|
||
output_tensor = ttnn.silu(input_tensor, memory_config=in_sharded_mem_config) | ||
output_tensor = ttnn.to_memory_config(output_tensor, memory_config=ttnn.L1_MEMORY_CONFIG) | ||
output_tensor = ttnn.to_torch(output_tensor) | ||
|
||
## compare the results | ||
assert_with_pcc(torch_result, output_tensor, 0.999) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
16 changes: 16 additions & 0 deletions
16
tt_eager/tt_dnn/op_library/eltwise_unary/kernels/dataflow/reader_unary_op.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
// SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
// | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include <stdint.h> | ||
#include "dataflow_api.h" | ||
|
||
void kernel_main() { | ||
uint32_t num_tiles_per_core = get_arg_val<uint32_t>(0); | ||
constexpr uint32_t cb_id_in0 = get_compile_time_arg_val(0); | ||
|
||
constexpr uint32_t onetile = 1; | ||
for (uint32_t i = 0; i < num_tiles_per_core; ++ i) { | ||
cb_push_back(cb_id_in0, onetile); | ||
} | ||
} |
Oops, something went wrong.