-
Notifications
You must be signed in to change notification settings - Fork 90
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#5044: Add optional output tensor and remove autoformat in eltwise bi…
…nary ops
- Loading branch information
1 parent
bfa47be
commit 66207ac
Showing
34 changed files
with
1,864 additions
and
212 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
245 changes: 245 additions & 0 deletions
245
...ager/python_api_testing/sweep_tests/pytests/tt_dnn/test_eltwise_binary_optional_output.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import pytest | ||
import torch | ||
from functools import partial | ||
import tt_lib as ttl | ||
|
||
from tests.tt_eager.python_api_testing.sweep_tests import ( | ||
comparison_funcs, | ||
generation_funcs, | ||
) | ||
from tests.tt_eager.python_api_testing.sweep_tests.run_pytorch_ci_tests import ( | ||
run_single_pytorch_test, | ||
) | ||
from models.utility_functions import is_wormhole_b0 | ||
|
||
shapes = [ | ||
[[1, 1, 32, 32], [1, 1, 32, 32], [1, 1, 32, 32]], # Single core | ||
[[1, 1, 32, 32], [32, 1, 32, 32], [32, 1, 32, 32]], # Single core | ||
[[64, 1, 32, 32], [1, 1, 32, 32], [64, 1, 32, 32]], # Single core | ||
[[1, 1, 320, 384], [1, 1, 320, 384], [1, 1, 320, 384]], # Multi core | ||
[[1, 3, 320, 384], [1, 3, 320, 384], [1, 3, 320, 384]], # Multi core | ||
] | ||
|
||
input_mem_cfgs = generation_funcs.supported_mem_configs | ||
|
||
if is_wormhole_b0(): | ||
shapes = [ | ||
shapes[0], | ||
] | ||
input_mem_cfgs = [ | ||
input_mem_cfgs[0], | ||
] | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"input_shapes", | ||
shapes, | ||
) | ||
@pytest.mark.parametrize("input_mem_config", input_mem_cfgs) | ||
class TestEltwiseBinary: | ||
@pytest.mark.parametrize("fn_kind", ["add", "sub", "mul", "squared_difference"]) | ||
@pytest.mark.parametrize("in0_dtype", [ttl.tensor.DataType.BFLOAT16, ttl.tensor.DataType.BFLOAT8_B]) | ||
@pytest.mark.parametrize("in1_dtype", [ttl.tensor.DataType.BFLOAT16, ttl.tensor.DataType.BFLOAT8_B]) | ||
@pytest.mark.parametrize("in2_dtype", [ttl.tensor.DataType.BFLOAT16, ttl.tensor.DataType.BFLOAT8_B]) | ||
def test_run_eltwise_binary_ops( | ||
self, | ||
input_shapes, | ||
fn_kind, | ||
in0_dtype, | ||
in1_dtype, | ||
in2_dtype, | ||
input_mem_config, | ||
device, | ||
function_level_defaults, | ||
): | ||
datagen_func = [ | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-100, high=100), torch.float32) | ||
] * (len(input_shapes) - 1) | ||
datagen_func.append( | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-10, high=10), torch.bfloat16) | ||
) | ||
test_args = list(generation_funcs.gen_default_dtype_layout_device(input_shapes))[0] | ||
test_args.update( | ||
{ | ||
"dtype": [in0_dtype, in1_dtype, in2_dtype], | ||
"input_mem_config": [input_mem_config, input_mem_config, input_mem_config], | ||
} | ||
) | ||
comparison_func = comparison_funcs.comp_pcc | ||
run_single_pytorch_test( | ||
f"eltwise-{fn_kind}-optional", | ||
input_shapes, | ||
datagen_func, | ||
comparison_func, | ||
device, | ||
test_args, | ||
) | ||
|
||
@pytest.mark.parametrize( | ||
"fn_kind", | ||
[ | ||
"bias_gelu", | ||
], | ||
) | ||
def test_run_eltwise_binary_bias_ops( | ||
self, | ||
input_shapes, | ||
fn_kind, | ||
input_mem_config, | ||
device, | ||
function_level_defaults, | ||
): | ||
datagen_func = [ | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-100, high=100), torch.bfloat16) | ||
] * (len(input_shapes) - 1) | ||
datagen_func.append( | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-10, high=10), torch.bfloat16) | ||
) | ||
|
||
test_args = list(generation_funcs.gen_default_dtype_layout_device(input_shapes))[0] | ||
test_args.update( | ||
{ | ||
"input_mem_config": [input_mem_config, input_mem_config, input_mem_config], | ||
} | ||
) | ||
comparison_func = comparison_funcs.comp_pcc | ||
run_single_pytorch_test( | ||
f"eltwise-{fn_kind}-optional", | ||
input_shapes, | ||
datagen_func, | ||
comparison_func, | ||
device, | ||
test_args, | ||
) | ||
|
||
@pytest.mark.parametrize("cmp_kind", ["lt", "gt", "lte", "gte", "ne", "eq"]) | ||
def test_run_eltwise_binary_cmp_ops( | ||
self, | ||
input_shapes, | ||
input_mem_config, | ||
cmp_kind, | ||
device, | ||
function_level_defaults, | ||
): | ||
datagen_func = [ | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-100, high=100), torch.bfloat16) | ||
] * (len(input_shapes) - 1) | ||
datagen_func.append( | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-10, high=10), torch.bfloat16) | ||
) | ||
test_args = list(generation_funcs.gen_default_dtype_layout_device(input_shapes))[0] | ||
test_args.update( | ||
{ | ||
"input_mem_config": [input_mem_config, input_mem_config, input_mem_config], | ||
} | ||
) | ||
comparison_func = comparison_funcs.comp_equal | ||
run_single_pytorch_test( | ||
f"eltwise-{cmp_kind}-optional", | ||
input_shapes, | ||
datagen_func, | ||
comparison_func, | ||
device, | ||
test_args, | ||
) | ||
|
||
@pytest.mark.parametrize( | ||
"log_kind, input_range", | ||
( | ||
("logaddexp", {"low": -80, "high": 80}), | ||
("ldexp", {"low": -60, "high": 60}), | ||
("logaddexp2", {"low": -60, "high": 100}), | ||
), | ||
) | ||
def test_run_eltwise_binary_log_ops( | ||
self, input_shapes, input_mem_config, log_kind, input_range, device, function_level_defaults | ||
): | ||
datagen_func = [ | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, **input_range), torch.bfloat16) | ||
] * (len(input_shapes) - 1) | ||
datagen_func.append( | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-10, high=10), torch.bfloat16) | ||
) | ||
test_args = list(generation_funcs.gen_default_dtype_layout_device(input_shapes))[0] | ||
test_args.update( | ||
{ | ||
"input_mem_config": [input_mem_config, input_mem_config, input_mem_config], | ||
} | ||
) | ||
comparison_func = comparison_funcs.comp_pcc | ||
run_single_pytorch_test( | ||
f"eltwise-{log_kind}-optional", | ||
input_shapes, | ||
datagen_func, | ||
comparison_func, | ||
device, | ||
test_args, | ||
) | ||
|
||
@pytest.mark.parametrize("logical_kind", ["logical_and", "logical_or"]) | ||
def test_run_eltwise_binary_logical_ops( | ||
self, | ||
input_shapes, | ||
input_mem_config, | ||
logical_kind, | ||
device, | ||
function_level_defaults, | ||
): | ||
datagen_func = [ | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-100, high=100), torch.int32) | ||
] * (len(input_shapes) - 1) | ||
datagen_func.append( | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-10, high=10), torch.bfloat16) | ||
) | ||
test_args = list(generation_funcs.gen_default_dtype_layout_device(input_shapes))[0] | ||
test_args.update( | ||
{ | ||
"input_mem_config": [input_mem_config, input_mem_config, input_mem_config], | ||
} | ||
) | ||
comparison_func = comparison_funcs.comp_equal | ||
run_single_pytorch_test( | ||
f"eltwise-{logical_kind}-optional", | ||
input_shapes, | ||
datagen_func, | ||
comparison_func, | ||
device, | ||
test_args, | ||
) | ||
|
||
@pytest.mark.parametrize( | ||
"log_kind, input_range", | ||
( | ||
("logaddexp", {"low": -80, "high": 80}), | ||
("ldexp", {"low": -60, "high": 60}), | ||
("logaddexp2", {"low": -60, "high": 100}), | ||
), | ||
) | ||
def test_run_eltwise_binary_log_ops( | ||
self, input_shapes, input_mem_config, log_kind, input_range, device, function_level_defaults | ||
): | ||
datagen_func = [ | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, **input_range), torch.bfloat16) | ||
] * (len(input_shapes) - 1) | ||
datagen_func.append( | ||
generation_funcs.gen_func_with_cast(partial(generation_funcs.gen_rand, low=-10, high=10), torch.bfloat16) | ||
) | ||
test_args = list(generation_funcs.gen_default_dtype_layout_device(input_shapes))[0] | ||
test_args.update( | ||
{ | ||
"input_mem_config": [input_mem_config, input_mem_config, input_mem_config], | ||
} | ||
) | ||
comparison_func = comparison_funcs.comp_pcc | ||
run_single_pytorch_test( | ||
f"eltwise-{log_kind}-optional", | ||
input_shapes, | ||
datagen_func, | ||
comparison_func, | ||
device, | ||
test_args, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.