Skip to content

Commit

Permalink
Add rotary embedding sweep (#15743)
Browse files Browse the repository at this point in the history
  • Loading branch information
amalbasaTT authored Dec 10, 2024
1 parent c2c2b16 commit 60373c8
Show file tree
Hide file tree
Showing 3 changed files with 160 additions and 0 deletions.
1 change: 1 addition & 0 deletions .github/workflows/ttnn-run-sweeps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -348,6 +348,7 @@ on:
- transformer.split_query_key_value_and_split_heads.split_query_key_value_and_split_heads_kv_input
- transformer.attention_softmax.attention_softmax
- transformer.attention_softmax.attention_softmax_
- transformer.rotary_embedding.rotary_embedding
- data_movement.stack.stack_pytorch2
- data_movement.repeat.repeat_pytorch2
- data_movement.split.split_pytorch2
Expand Down
22 changes: 22 additions & 0 deletions tests/sweep_framework/sweep_utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,6 +220,28 @@ def gen_split_qkv_heads_spec(
}


def gen_rotary_embedding_spec(
input_shape_list,
cache_size_list,
use_token_idx_list=[True, False],
):
for input_shape, cache_size, use_token_idx in itertools.product(
input_shape_list, cache_size_list, use_token_idx_list
):
input_shape_ = input_shape.copy()
if use_token_idx is True:
token_idx = random.randint(1, cache_size - 1)
input_shape_[0] = 1
else:
token_idx = None

yield {
"input_shape": input_shape_,
"cache_size": cache_size,
"token_idx": token_idx,
}


def gen_complex_tensor(input_shape, low, high, dtype=ttnn.bfloat16):
torch_real = gen_func_with_cast_tt(partial(torch_random, low=-100, high=100, dtype=torch.float32), dtype)(
input_shape
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes, gen_rotary_embedding_spec
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_spec": gen_rotary_embedding_spec(
input_shape_list=gen_shapes([1, 1, 32, 64], [6, 12, 256, 512], [1, 1, 32, 64], 16),
cache_size_list=[random.randint(1, 2048) for i in range(8)],
),
"input_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_layout": [ttnn.ROW_MAJOR_LAYOUT, ttnn.TILE_LAYOUT],
"input_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
},
}


def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT and test_vector["input_dtype"] == ttnn.bfloat8_b:
return True, "bfloat8_b/bfloat4_b requires TILE_LAYOUT!"
if test_vector["input_spec"]["input_shape"][-1] % 64 != 0:
return True, "Input X dimension (133) must be divisible by 64 for tiling"
if test_vector["input_spec"]["token_idx"] and test_vector["input_spec"]["input_shape"][0] != 1:
return True, "When passing token_idx, sequence length must be 1"
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_spec,
input_dtype,
input_layout,
input_memory_config,
output_memory_config,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

input_shape, cache_size, token_idx = input_spec.values()
seq_length, batch_size, num_heads, head_dim = input_shape

sin_cos_cache_shape = [1, 1, cache_size, head_dim]

torch_input_tensor = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(input_shape)
torch_cos_cache_tensor = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(sin_cos_cache_shape)
torch_sin_cache_tensor = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_dtype
)(sin_cos_cache_shape)

if token_idx:
golden_function = partial(ttnn.get_golden_function(ttnn.experimental.rotary_embedding), token_idx=token_idx)
else:

def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(x, cos_cached, sin_cached, token_idx=None):
seq_len = x.shape[-2]
if token_idx is None:
cos = cos_cached[:, :, :seq_len, ...]
sin = sin_cached[:, :, :seq_len, ...]
else:
cos = cos_cached[:, :, token_idx : token_idx + 1, ...]
sin = sin_cached[:, :, token_idx : token_idx + 1, ...]

x_embed = (x * cos) + (rotate_half(x) * sin)
return x_embed

golden_function = apply_rotary_pos_emb

torch_output_tensor = golden_function(torch_input_tensor, torch_cos_cache_tensor, torch_sin_cache_tensor)

input_tensor = ttnn.from_torch(
torch_input_tensor,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)
cos_cache_tensor = ttnn.from_torch(
torch_cos_cache_tensor,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)
sin_cache_tensor = ttnn.from_torch(
torch_sin_cache_tensor,
dtype=input_dtype,
layout=input_layout,
device=device,
memory_config=input_memory_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.experimental.rotary_embedding(
input_tensor, cos_cache_tensor, sin_cache_tensor, token_idx, memory_config=output_memory_config
)
e2e_perf = stop_measuring_time(start_time)

output_tensor = ttnn.to_torch(output_tensor)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]

0 comments on commit 60373c8

Please sign in to comment.