-
Notifications
You must be signed in to change notification settings - Fork 87
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#13396: Add data parallel support for distilbert model
- Loading branch information
1 parent
82eb413
commit 5d9f7cc
Showing
9 changed files
with
1,356 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
## Distilbert Model | ||
|
||
# Platforms: | ||
WH N300, N150 | ||
|
||
## Introduction | ||
DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. The DistilBERT Question Answering model is fine-tuned specifically for the task of extracting answers from a given context, making it highly efficient for question-answering applications. | ||
|
||
# Details | ||
The entry point to distilebert model is distilbert_for_question_answering in `models/demos/wormhole/distilbert/tt/ttnn_optimized_distilbert.py`. The model picks up certain configs and weights from huggingface pretrained model. We have used `distilbert-base-uncased-distilled-squad` version from huggingface as our reference. | ||
|
||
This model, located in `models/demos/wormhole`, supports functionality on both N150 and N300 devices, depending on availability. If the device is N300, the weights and inputs are distributed across the device, allowing the model to run in parallel. | ||
|
||
## Sequence Size: 384 | ||
|
||
Sequence size determines the maximum length of input sequences processed by the model, optimizing performance and compatibility. It's recommended to set the `sequence_size` to 384 | ||
|
||
## Batch size: 8 | ||
|
||
Batch Size determines the number of input sequences processed simultaneously during training or inference, impacting computational efficiency and memory usage. It's recommended to set the `batch_size` to 8 | ||
|
||
Use `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo[wormhole_b0-True-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-8-distilbert-base-uncased-distilled-squad-models/demos/wormhole/distilbert/demo/input_data.json]` to run the ttnn_optimized_distilbert demo. | ||
|
||
|
||
If you wish to run the demo with a different input, change the pytest fixture input_loc to the desired location and use `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo[wormhole_b0-True-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-8-distilbert-base-uncased-distilled-squad-<path to input file>]`. This file is expected to have exactly 8 inputs. | ||
|
||
Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo_squadv2[wormhole_b0-True-3-8-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-distilbert-base-uncased-distilled-squad]`. | ||
|
||
If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/demos/wormhole/distilbert/demo/demo.py::test_demo_squadv2[wormhole_b0-True-<n_iterations>-8-models.demos.wormhole.distilbert.tt.ttnn_optimized_distilbert-distilbert-base-uncased-distilled-squad]` | ||
|
||
## Inputs | ||
|
||
The demo receives inputs from respective input_data.json by default. To modify the inputs or specify a different path, adjust the input_path parameter in the command accordingly. It's recommended to avoid direct modifications to the input_data.json file. | ||
|
||
# Owner Sudharsan Vijayaraghavan |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,351 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
import json | ||
import pytest | ||
import torch | ||
from loguru import logger | ||
import ttnn | ||
from models.utility_functions import ( | ||
disable_compilation_reports, | ||
disable_persistent_kernel_cache, | ||
profiler, | ||
) | ||
from models.demos.wormhole.distilbert.tt import ttnn_optimized_distilbert | ||
from models.demos.wormhole.distilbert.distilbert_utils import ( | ||
squadv2_1K_samples_input, | ||
squadv2_answer_decode_batch, | ||
) | ||
from ttnn.model_preprocessing import ( | ||
preprocess_model_parameters, | ||
) | ||
from models.utility_functions import is_wormhole_b0, skip_for_grayskull | ||
from transformers import DistilBertForQuestionAnswering, AutoTokenizer, pipeline | ||
import evaluate | ||
|
||
|
||
def load_inputs(input_path, batch): | ||
with open(input_path) as f: | ||
input_data = json.load(f) | ||
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries." | ||
context = [] | ||
question = [] | ||
for i in range(batch): | ||
context.append(input_data[i]["context"]) | ||
question.append(input_data[i]["question"]) | ||
return context, question | ||
|
||
|
||
def run_distilbert_question_and_answering_inference( | ||
model_name, | ||
batch_size, | ||
sequence_size, | ||
distilbert, | ||
model_location_generator, | ||
input_path, | ||
mesh_device, | ||
): | ||
disable_persistent_kernel_cache() | ||
|
||
HF_model = DistilBertForQuestionAnswering.from_pretrained(model_name) | ||
HF_model.eval() | ||
tt_model_name = f"ttnn_{model_name}_optimized" | ||
|
||
inputs_mesh_mapper = ttnn.ShardTensorToMesh(mesh_device, dim=0) | ||
weights_mesh_mapper = ttnn.ReplicateTensorToMesh(mesh_device) | ||
output_mesh_composer = ttnn.ConcatMeshToTensor(mesh_device, dim=0) | ||
|
||
profiler.start(f"preprocessing_parameter") | ||
|
||
with ttnn.distribute(ttnn.ReplicateTensorToMesh(mesh_device)): | ||
parameters = preprocess_model_parameters( | ||
model_name=tt_model_name, | ||
initialize_model=lambda: HF_model, | ||
custom_preprocessor=ttnn_optimized_distilbert.custom_preprocessor, | ||
device=mesh_device, | ||
) | ||
profiler.end(f"preprocessing_parameter") | ||
|
||
# set up tokenizer | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
config = HF_model.config | ||
nlp = pipeline("question-answering", model=HF_model, tokenizer=tokenizer) | ||
|
||
context, question = load_inputs(input_path, batch_size) | ||
preprocess_params, _, postprocess_params = nlp._sanitize_parameters(max_seq_len=sequence_size, padding="max_length") | ||
inputs = nlp._args_parser({"question": question, "context": context}) | ||
preprocessed_inputs = [] | ||
for i in range(batch_size): | ||
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params)) | ||
single_input = { | ||
"example": model_input["example"], | ||
"inputs": model_input, | ||
} | ||
preprocessed_inputs.append(single_input) | ||
|
||
distilbert_input = tokenizer( | ||
question, | ||
context, | ||
max_length=sequence_size, | ||
padding="max_length", | ||
truncation=True, | ||
return_attention_mask=True, | ||
return_tensors="pt", | ||
) | ||
|
||
profiler.start(f"preprocessing_input") | ||
position_ids = torch.arange(config.max_position_embeddings).expand((1, -1)) | ||
position_ids = torch.cat([position_ids] * batch_size, dim=0) | ||
input_ids, position_ids, attention_mask = distilbert.preprocess_inputs( | ||
distilbert_input["input_ids"], | ||
position_ids, | ||
distilbert_input["attention_mask"], | ||
device=mesh_device, | ||
mesh_mapper=inputs_mesh_mapper, | ||
) | ||
profiler.end(f"preprocessing_input") | ||
|
||
mask_reshp = (batch_size, 1, 1, attention_mask.shape[1]) | ||
score_shape = (batch_size, 12, 384, 384) | ||
|
||
mask = (distilbert_input["attention_mask"] == 0).view(mask_reshp).expand(score_shape) | ||
min_val = torch.zeros(score_shape) | ||
min_val_tensor = min_val.masked_fill(mask, torch.tensor(torch.finfo(torch.bfloat16).min)) | ||
negative_val = torch.zeros(score_shape) | ||
negative_val_tensor = negative_val.masked_fill(mask, -1) | ||
|
||
min_val_tensor = ttnn.from_torch( | ||
min_val_tensor, dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, mesh_mapper=inputs_mesh_mapper, device=mesh_device | ||
) | ||
|
||
negative_val_tensor = ttnn.from_torch( | ||
negative_val_tensor, | ||
dtype=ttnn.bfloat16, | ||
layout=ttnn.TILE_LAYOUT, | ||
mesh_mapper=inputs_mesh_mapper, | ||
device=mesh_device, | ||
) | ||
|
||
profiler.start(f"inference_time") | ||
tt_output = ttnn_optimized_distilbert.distilbert_for_question_answering( | ||
config, | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
parameters=parameters, | ||
device=mesh_device, | ||
min_val_tensor=min_val_tensor, | ||
negative_val_tensor=negative_val_tensor, | ||
mesh_mapper=weights_mesh_mapper, | ||
ip_mesh_mapper=inputs_mesh_mapper, | ||
) | ||
profiler.end(f"inference_time") | ||
|
||
tt_output = ( | ||
ttnn.to_torch(ttnn.from_device(tt_output), mesh_composer=output_mesh_composer) | ||
.reshape(batch_size, 1, sequence_size, -1) | ||
.to(torch.float32) | ||
) | ||
tt_start_logits = tt_output[..., :, 0].squeeze(1) | ||
tt_end_logits = tt_output[..., :, 1].squeeze(1) | ||
model_answers = {} | ||
|
||
profiler.start("post_processing_output_to_string") | ||
for i in range(batch_size): | ||
tt_res = { | ||
"start": tt_start_logits[i], | ||
"end": tt_end_logits[i], | ||
"example": preprocessed_inputs[i]["example"], | ||
**preprocessed_inputs[i]["inputs"], | ||
} | ||
tt_answer = nlp.postprocess([tt_res], **postprocess_params) | ||
logger.info(f"answer: {tt_answer['answer']}\n") | ||
model_answers[i] = tt_answer["answer"] | ||
profiler.end("post_processing_output_to_string") | ||
|
||
measurements = { | ||
"preprocessing_parameter": profiler.get("preprocessing_parameter"), | ||
"preprocessing_input": profiler.get("preprocessing_input"), | ||
"inference_time": profiler.get("inference_time"), | ||
"post_processing": profiler.get("post_processing_output_to_string"), | ||
} | ||
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s") | ||
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s") | ||
logger.info(f"inference_time: {measurements['inference_time']} s") | ||
logger.info(f"post_processing : {measurements['post_processing']} s") | ||
return measurements | ||
|
||
|
||
def run_distilbert_question_and_answering_inference_squad_v2( | ||
use_program_cache, | ||
model_name, | ||
batch_size, | ||
sequence_size, | ||
distilbert, | ||
model_location_generator, | ||
n_iterations, | ||
mesh_device, | ||
): | ||
disable_persistent_kernel_cache() | ||
HF_model = DistilBertForQuestionAnswering.from_pretrained(model_name) | ||
HF_model.eval() | ||
|
||
tt_model_name = f"ttnn_{model_name}_optimized" | ||
|
||
inputs_mesh_mapper = ttnn.ShardTensorToMesh(mesh_device, dim=0) | ||
weights_mesh_mapper = ttnn.ReplicateTensorToMesh(mesh_device) | ||
output_mesh_composer = ttnn.ConcatMeshToTensor(mesh_device, dim=0) | ||
|
||
with ttnn.distribute(ttnn.ReplicateTensorToMesh(mesh_device)): | ||
parameters = preprocess_model_parameters( | ||
model_name=tt_model_name, | ||
initialize_model=lambda: HF_model, | ||
custom_preprocessor=ttnn_optimized_distilbert.custom_preprocessor, | ||
device=mesh_device, | ||
) | ||
|
||
# set up tokenizer | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
config = HF_model.config | ||
|
||
nlp = pipeline("question-answering", model=HF_model, tokenizer=tokenizer) | ||
attention_mask = True | ||
token_type_ids = False | ||
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size) | ||
squad_metric = evaluate.load("squad_v2") | ||
position_ids = torch.arange(config.max_position_embeddings).expand((1, -1)) | ||
position_ids = torch.cat([position_ids] * batch_size, dim=0) | ||
|
||
with torch.no_grad(): | ||
pred_labels = [] | ||
cpu_pred_labels = [] | ||
true_labels = [] | ||
i = 0 | ||
for batch in inputs_squadv2: | ||
if i < n_iterations: | ||
batch_data = batch[0] | ||
curr_batch_size = batch_data["input_ids"].shape[0] | ||
ttnn_distilbert_inputs = distilbert.preprocess_inputs( | ||
batch_data["input_ids"], | ||
position_ids, | ||
batch_data["attention_mask"], | ||
device=mesh_device, | ||
mesh_mapper=inputs_mesh_mapper, | ||
) | ||
mask_reshp = (batch_size, 1, 1, batch_data["attention_mask"].shape[1]) | ||
score_shape = (batch_size, 12, 384, 384) | ||
|
||
mask = (batch_data["attention_mask"] == 0).view(mask_reshp).expand(score_shape) | ||
min_val = torch.zeros(score_shape) | ||
min_val_tensor = min_val.masked_fill(mask, torch.tensor(torch.finfo(torch.bfloat16).min)) | ||
negative_val = torch.zeros(score_shape) | ||
negative_val_tensor = negative_val.masked_fill(mask, -1) | ||
min_val_tensor = ttnn.from_torch( | ||
min_val_tensor, | ||
dtype=ttnn.bfloat16, | ||
layout=ttnn.TILE_LAYOUT, | ||
mesh_mapper=inputs_mesh_mapper, | ||
device=mesh_device, | ||
) | ||
|
||
negative_val_tensor = ttnn.from_torch( | ||
negative_val_tensor, | ||
dtype=ttnn.bfloat16, | ||
layout=ttnn.TILE_LAYOUT, | ||
mesh_mapper=inputs_mesh_mapper, | ||
device=mesh_device, | ||
) | ||
|
||
tt_output = ttnn_optimized_distilbert.distilbert_for_question_answering( | ||
config, | ||
input_ids=ttnn_distilbert_inputs[0], | ||
attention_mask=ttnn_distilbert_inputs[2], | ||
position_ids=ttnn_distilbert_inputs[1], | ||
parameters=parameters, | ||
device=mesh_device, | ||
min_val_tensor=min_val_tensor, | ||
negative_val_tensor=negative_val_tensor, | ||
mesh_mapper=weights_mesh_mapper, | ||
ip_mesh_mapper=inputs_mesh_mapper, | ||
) | ||
tt_output = ( | ||
ttnn.to_torch(tt_output, mesh_composer=output_mesh_composer) | ||
.reshape(batch_size, 1, sequence_size, -1) | ||
.to(torch.float32) | ||
) | ||
cpu_output = HF_model(**batch_data) | ||
references = batch[1] | ||
question = batch[2] | ||
context = batch[3] | ||
cpu_predictions, tt_predictions = squadv2_answer_decode_batch( | ||
HF_model, | ||
tokenizer, | ||
nlp, | ||
references, | ||
cpu_output, | ||
tt_output, | ||
curr_batch_size, | ||
question, | ||
context, | ||
) | ||
pred_labels.extend(tt_predictions) | ||
cpu_pred_labels.extend(cpu_predictions) | ||
true_labels.extend(references) | ||
del tt_output | ||
i += 1 | ||
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels) | ||
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels) | ||
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}") | ||
logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}") | ||
|
||
|
||
@skip_for_grayskull() | ||
@pytest.mark.parametrize( | ||
"model_name, input_loc", | ||
((["distilbert-base-uncased-distilled-squad", "models/demos/wormhole/distilbert/demo/input_data.json"]),), | ||
) | ||
@pytest.mark.parametrize("batch_size", [8]) | ||
@pytest.mark.parametrize("distilbert", [ttnn_optimized_distilbert]) | ||
def test_demo(input_loc, model_name, distilbert, batch_size, model_location_generator, mesh_device): | ||
disable_persistent_kernel_cache() | ||
disable_compilation_reports() | ||
|
||
if ttnn.GetNumAvailableDevices() == 2: | ||
batch_size = batch_size * 2 | ||
|
||
return run_distilbert_question_and_answering_inference( | ||
model_name=model_name, | ||
batch_size=batch_size, | ||
sequence_size=384, | ||
distilbert=distilbert, | ||
model_location_generator=model_location_generator, | ||
input_path=input_loc, | ||
mesh_device=mesh_device, | ||
) | ||
|
||
|
||
@skip_for_grayskull() | ||
@pytest.mark.parametrize("model_name", ["distilbert-base-uncased-distilled-squad"]) | ||
@pytest.mark.parametrize("distilbert", [ttnn_optimized_distilbert]) | ||
@pytest.mark.parametrize("batch_size", [8]) | ||
@pytest.mark.parametrize( | ||
"n_iterations", | ||
((3),), | ||
) | ||
def test_demo_squadv2( | ||
model_name, distilbert, batch_size, n_iterations, model_location_generator, use_program_cache, mesh_device | ||
): | ||
disable_persistent_kernel_cache() | ||
disable_compilation_reports() | ||
|
||
if ttnn.GetNumAvailableDevices() == 2: | ||
batch_size = batch_size * 2 | ||
return run_distilbert_question_and_answering_inference_squad_v2( | ||
use_program_cache=use_program_cache, | ||
model_name=model_name, | ||
batch_size=batch_size, | ||
sequence_size=384, | ||
distilbert=distilbert, | ||
model_location_generator=model_location_generator, | ||
n_iterations=n_iterations, | ||
mesh_device=mesh_device, | ||
) |
Oops, something went wrong.