-
Notifications
You must be signed in to change notification settings - Fork 96
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#14732: add bert-tiny test_performance using trace and 2cq-WIP
- Loading branch information
1 parent
fbc8a9d
commit 5b8d6d6
Showing
9 changed files
with
1,589 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
## Bert-Tiny Demo | ||
|
||
## Introduction | ||
BERT stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. | ||
|
||
# Platforms: | ||
E150, WH N300, N150 | ||
|
||
## How to Run | ||
|
||
Use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo[models/demos/bert_tiny/demo/input_data.json-mrm8488/bert-tiny-finetuned-squadv2-128-8-device_params0]` to run the demo. | ||
|
||
|
||
If you wish to run the demo with a different input use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo[<address_to_your_json_file.json>-mrm8488/bert-tiny-finetuned-squadv2-128-8-device_params0]`. This file is expected to have exactly 8 inputs. | ||
|
||
|
||
Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo_squadv2[1-mrm8488/bert-tiny-finetuned-squadv2-384-8-device_params0]`. | ||
|
||
If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/demos/bert_tiny/demo/demo.py::test_demo_squadv2[<n_iterations>-mrm8488/bert-tiny-finetuned-squadv2-384-8-device_params0]` | ||
|
||
|
||
# Inputs | ||
Inputs by default are provided from `input_data.json`. If you wish you to change the inputs, provide a different path to test_demo. | ||
|
||
We do not recommend modifying `input_data.json` file. | ||
|
||
# Details | ||
The entry point to bert model is bert_for_question_answering in `models/demos/bert_tiny/tt/bert_tiny.py`. The model picks up certain configs and weights from huggingface pretrained model. We have used `mrm8488/bert-tiny-finetuned-squadv2` version from huggingface as our reference. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import json | ||
import pytest | ||
import torch | ||
from loguru import logger | ||
|
||
import ttnn | ||
from models.utility_functions import ( | ||
disable_compilation_reports, | ||
disable_persistent_kernel_cache, | ||
profiler, | ||
) | ||
from models.experimental.functional_common.attention_mask_functions import get_extended_attention_mask | ||
|
||
from models.datasets.dataset_squadv2 import squadv2_1K_samples_input, squadv2_answer_decode_batch | ||
from ttnn.model_preprocessing import ( | ||
preprocess_model_parameters, | ||
) | ||
|
||
from ttnn.model_preprocessing import * | ||
from transformers import BertForQuestionAnswering, BertTokenizer, pipeline | ||
from models.demos.bert_tiny.tt.bert_tiny import bert_for_question_answering, preprocess_inputs | ||
import evaluate | ||
|
||
|
||
def load_inputs(input_path, batch): | ||
with open(input_path) as f: | ||
input_data = json.load(f) | ||
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries." | ||
|
||
context = [] | ||
question = [] | ||
for i in range(batch): | ||
context.append(input_data[i]["context"]) | ||
question.append(input_data[i]["question"]) | ||
|
||
return context, question | ||
|
||
|
||
def positional_ids(config, input_ids, past_key_values_length=0): | ||
seq_length = input_ids.size(1) | ||
position_ids = torch.arange(config.max_position_embeddings, dtype=torch.long, device=input_ids.device) | ||
position_ids = position_ids.unsqueeze(0)[:, past_key_values_length : seq_length + past_key_values_length] | ||
position_ids = position_ids.expand_as(input_ids) | ||
|
||
return position_ids | ||
|
||
|
||
def run_bert_question_and_answering_inference( | ||
device, | ||
use_program_cache, | ||
model_name, | ||
batch_size, | ||
sequence_size, | ||
model_location_generator, | ||
input_path, | ||
): | ||
disable_persistent_kernel_cache() | ||
model = str(model_location_generator(model_name, model_subdir="Bert")) | ||
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False) | ||
pytorch_model = hugging_face_reference_model.eval() | ||
|
||
tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert")) | ||
tokenizer = BertTokenizer.from_pretrained(tokenizer_name) | ||
config = hugging_face_reference_model.config | ||
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer) | ||
|
||
profiler.start(f"preprocessing_parameter") | ||
parameters = preprocess_model_parameters( | ||
initialize_model=lambda: pytorch_model, | ||
device=device, | ||
convert_to_ttnn=lambda *_: True, | ||
) | ||
profiler.end(f"preprocessing_parameter") | ||
|
||
context, question = load_inputs(input_path, batch_size) | ||
|
||
preprocess_params, _, postprocess_params = nlp._sanitize_parameters() | ||
preprocess_params["max_seq_len"] = sequence_size | ||
inputs = nlp._args_parser({"context": context, "question": question}) | ||
preprocessed_inputs = [] | ||
for i in range(batch_size): | ||
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params)) | ||
single_input = { | ||
"example": model_input["example"], | ||
"inputs": model_input, | ||
} | ||
preprocessed_inputs.append(single_input) | ||
|
||
bert_input = tokenizer.batch_encode_plus( | ||
zip(question, context), | ||
max_length=sequence_size, | ||
padding="max_length", | ||
truncation=True, | ||
return_attention_mask=True, | ||
return_token_type_ids=True, | ||
return_tensors="pt", | ||
) | ||
|
||
position_ids = positional_ids(config, bert_input.input_ids) | ||
profiler.start(f"preprocessing_input") | ||
ttnn_bert_inputs = preprocess_inputs( | ||
bert_input["input_ids"], | ||
bert_input["token_type_ids"], | ||
position_ids, | ||
bert_input["attention_mask"], | ||
device=device, | ||
) | ||
profiler.end(f"preprocessing_input") | ||
|
||
profiler.start(f"inference_time") | ||
ttnn_output = bert_for_question_answering( | ||
config, | ||
*ttnn_bert_inputs, | ||
parameters=parameters, | ||
device=device, | ||
) | ||
profiler.end(f"inference_time") | ||
|
||
ttnn_output = ( | ||
ttnn.to_torch(ttnn.from_device(ttnn_output)).reshape(batch_size, 1, sequence_size, -1).to(torch.float32) | ||
) | ||
|
||
ttnn_start_logits = ttnn_output[..., :, 0].squeeze(1) | ||
ttnn_end_logits = ttnn_output[..., :, 1].squeeze(1) | ||
|
||
model_answers = {} | ||
profiler.start("post_processing_output_to_string") | ||
for i in range(batch_size): | ||
tt_res = { | ||
"start": ttnn_start_logits[i], | ||
"end": ttnn_end_logits[i], | ||
"example": preprocessed_inputs[i]["example"], | ||
**preprocessed_inputs[i]["inputs"], | ||
} | ||
|
||
tt_answer = nlp.postprocess([tt_res], **postprocess_params) | ||
|
||
logger.info(f"answer: {tt_answer['answer']}\n") | ||
model_answers[i] = tt_answer["answer"] | ||
|
||
profiler.end("post_processing_output_to_string") | ||
|
||
measurements = { | ||
"preprocessing_parameter": profiler.get("preprocessing_parameter"), | ||
"preprocessing_input": profiler.get("preprocessing_input"), | ||
"inference_time": profiler.get("inference_time"), | ||
"post_processing": profiler.get("post_processing_output_to_string"), | ||
} | ||
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s") | ||
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s") | ||
logger.info(f"inference_time: {measurements['inference_time']} s") | ||
logger.info(f"post_processing : {measurements['post_processing']} s") | ||
|
||
return measurements | ||
|
||
|
||
def run_bert_question_and_answering_inference_squad_v2( | ||
device, | ||
use_program_cache, | ||
model_name, | ||
batch_size, | ||
sequence_size, | ||
model_location_generator, | ||
n_iterations, | ||
): | ||
disable_persistent_kernel_cache() | ||
|
||
model = str(model_location_generator(model_name, model_subdir="Bert")) | ||
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False) | ||
pytorch_model = hugging_face_reference_model.eval() | ||
|
||
# set up tokenizer | ||
tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert")) | ||
tokenizer = BertTokenizer.from_pretrained(tokenizer_name) | ||
config = hugging_face_reference_model.config | ||
|
||
parameters = preprocess_model_parameters( | ||
initialize_model=lambda: pytorch_model, | ||
device=device, | ||
convert_to_ttnn=lambda *_: True, | ||
) | ||
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer) | ||
|
||
attention_mask = True | ||
token_type_ids = True | ||
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size) | ||
squad_metric = evaluate.load("squad_v2") | ||
|
||
with torch.no_grad(): | ||
pred_labels = [] | ||
cpu_pred_labels = [] | ||
true_labels = [] | ||
i = 0 | ||
for batch in inputs_squadv2: | ||
if i < n_iterations: | ||
batch_data = batch[0] | ||
curr_batch_size = batch_data["input_ids"].shape[0] | ||
position_ids = positional_ids(config, batch_data.input_ids) | ||
ttnn_bert_inputs = preprocess_inputs( | ||
batch_data["input_ids"], | ||
batch_data["token_type_ids"], | ||
position_ids, | ||
batch_data["attention_mask"], | ||
device=device, | ||
) | ||
tt_output = bert_for_question_answering( | ||
config, | ||
*ttnn_bert_inputs, | ||
parameters=parameters, | ||
device=device, | ||
) | ||
tt_output = ( | ||
ttnn.to_torch(ttnn.from_device(tt_output)) | ||
.reshape(batch_size, 1, sequence_size, -1) | ||
.to(torch.float32) | ||
) | ||
cpu_output = hugging_face_reference_model(**batch_data) | ||
references = batch[1] | ||
question = batch[2] | ||
context = batch[3] | ||
|
||
cpu_predictions, tt_predictions = squadv2_answer_decode_batch( | ||
hugging_face_reference_model, | ||
tokenizer, | ||
nlp, | ||
references, | ||
cpu_output, | ||
tt_output, | ||
curr_batch_size, | ||
question, | ||
context, | ||
) | ||
pred_labels.extend(tt_predictions) | ||
cpu_pred_labels.extend(cpu_predictions) | ||
true_labels.extend(references) | ||
|
||
del tt_output | ||
i += 1 | ||
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels) | ||
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels) | ||
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}") | ||
logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}") | ||
|
||
|
||
@pytest.mark.parametrize("device_params", [{"l1_small_size": 24576}], indirect=True) | ||
@pytest.mark.parametrize("batch_size", [8]) | ||
@pytest.mark.parametrize("sequence_size", [128]) | ||
@pytest.mark.parametrize("model_name", ["mrm8488/bert-tiny-finetuned-squadv2"]) | ||
@pytest.mark.parametrize("input_loc", ["models/demos/bert_tiny/demo/input_data.json"]) | ||
def test_demo( | ||
input_loc, | ||
batch_size, | ||
sequence_size, | ||
model_name, | ||
model_location_generator, | ||
device, | ||
use_program_cache, | ||
): | ||
disable_persistent_kernel_cache() | ||
disable_compilation_reports() | ||
|
||
return run_bert_question_and_answering_inference( | ||
device=device, | ||
use_program_cache=use_program_cache, | ||
model_name=model_name, | ||
batch_size=batch_size, | ||
sequence_size=sequence_size, | ||
model_location_generator=model_location_generator, | ||
input_path=input_loc, | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("device_params", [{"l1_small_size": 24576}], indirect=True) | ||
@pytest.mark.parametrize("batch_size", [8]) | ||
@pytest.mark.parametrize("sequence_size", [384]) | ||
@pytest.mark.parametrize("model_name", ["mrm8488/bert-tiny-finetuned-squadv2"]) | ||
@pytest.mark.parametrize( | ||
"n_iterations", | ||
((1),), | ||
) | ||
def test_demo_squadv2( | ||
model_name, | ||
batch_size, | ||
sequence_size, | ||
n_iterations, | ||
model_location_generator, | ||
device, | ||
use_program_cache, | ||
): | ||
disable_persistent_kernel_cache() | ||
disable_compilation_reports() | ||
|
||
return run_bert_question_and_answering_inference_squad_v2( | ||
device=device, | ||
use_program_cache=use_program_cache, | ||
model_name=model_name, | ||
batch_size=batch_size, | ||
sequence_size=sequence_size, | ||
model_location_generator=model_location_generator, | ||
n_iterations=n_iterations, | ||
) |
Oops, something went wrong.