-
Notifications
You must be signed in to change notification settings - Fork 96
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#15565 Add unit test to show sharding ttnn.from_torch problems
- Loading branch information
1 parent
4bcc79b
commit 298d49c
Showing
1 changed file
with
199 additions
and
0 deletions.
There are no files selected for viewing
199 changes: 199 additions & 0 deletions
199
.../ttnn/python_api_testing/non_working_unit_tests/wormhole/test_eltwise_block_shard_spec.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from loguru import logger | ||
import random | ||
import pytest | ||
import torch | ||
import ttnn | ||
|
||
from tests.ttnn.utils_for_testing import assert_with_pcc, check_with_pcc | ||
from tests.ttnn.python_api_testing.sweep_tests import ttnn_ops | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf | ||
|
||
Y, X = (8, 8) | ||
|
||
|
||
def run_tests( | ||
input_shape, | ||
dtype, | ||
dlayout, | ||
tensor_memory_layout, | ||
byffer_type, | ||
shard_grid, | ||
shard_shape, | ||
shard_orientation, | ||
halo, | ||
torch_op, | ||
ttnn_op, | ||
gen_infs, | ||
device, | ||
): | ||
random.seed(0) | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
if gen_infs: | ||
torch_input_tensor_a = gen_rand_inf(input_shape, low=-100, high=100) | ||
else: | ||
torch_input_tensor_a = torch.Tensor(size=input_shape).uniform_(-50, 50).to(torch.bfloat16) | ||
|
||
torch_output_tensor = torch_input_tensor_a | ||
|
||
shard_spec = ttnn.ShardSpec(shard_grid, shard_shape, shard_orientation, halo) | ||
sharded_config = ttnn.MemoryConfig(tensor_memory_layout, byffer_type, shard_spec) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=dtype, | ||
layout=dlayout, | ||
device=device, | ||
memory_config=sharded_config, | ||
) | ||
|
||
output_tensor = input_tensor_a | ||
output_tensor = ttnn.to_torch(output_tensor) | ||
|
||
[passed, message] = check_with_pcc(torch_output_tensor, output_tensor, 0.999) | ||
assert passed, f"PCC={message}" | ||
|
||
|
||
test_sweep_args = [ | ||
( | ||
(256, 2, 5, 1536), # Tensor shape | ||
ttnn.bfloat16, # Tensor dtype | ||
ttnn.TILE_LAYOUT, # Tensor layout | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[320, 192], # shard shape | ||
ttnn.ShardOrientation.COL_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(256, 2, 5, 1536), | ||
ttnn.bfloat16, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[320, 192], | ||
ttnn.ShardOrientation.ROW_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(256, 2, 5, 1536), | ||
ttnn.bfloat8_b, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[320, 192], | ||
ttnn.ShardOrientation.COL_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(1, 256, 2, 2304), | ||
ttnn.bfloat16, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[64, 288], | ||
ttnn.ShardOrientation.COL_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(1, 256, 2, 2304), | ||
ttnn.bfloat16, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[64, 288], | ||
ttnn.ShardOrientation.ROW_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(1, 256, 2, 2304), | ||
ttnn.bfloat8_b, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[64, 288], | ||
ttnn.ShardOrientation.COL_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(32, 4, 8, 768), | ||
ttnn.bfloat16, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[128, 96], | ||
ttnn.ShardOrientation.COL_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(32, 4, 8, 768), | ||
ttnn.bfloat16, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[128, 96], | ||
ttnn.ShardOrientation.ROW_MAJOR, | ||
0, # halo | ||
), | ||
( | ||
(32, 4, 8, 768), | ||
ttnn.bfloat8_b, | ||
ttnn.TILE_LAYOUT, | ||
ttnn.TensorMemoryLayout.BLOCK_SHARDED, | ||
ttnn.BufferType.L1, | ||
ttnn.CoreRangeSet({ttnn.CoreRange(ttnn.CoreCoord(0, 0), ttnn.CoreCoord(7, 7))}), # core grid | ||
[128, 96], | ||
ttnn.ShardOrientation.COL_MAJOR, | ||
0, # halo | ||
), | ||
] | ||
|
||
|
||
def nop(x, memory_config=None): | ||
return x | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"input_shape, dtype, dlayout, tensor_memory_layout, byffer_type, shard_grid, shard_shape, shard_orientation, halo", | ||
(test_sweep_args), | ||
) | ||
def test_eltwise_nop( | ||
input_shape, | ||
dtype, | ||
dlayout, | ||
tensor_memory_layout, | ||
byffer_type, | ||
shard_grid, | ||
shard_shape, | ||
shard_orientation, | ||
halo, | ||
device, | ||
): | ||
run_tests( | ||
input_shape, | ||
dtype, | ||
dlayout, | ||
tensor_memory_layout, | ||
byffer_type, | ||
shard_grid, | ||
shard_shape, | ||
shard_orientation, | ||
halo, | ||
nop, | ||
nop, | ||
False, | ||
device, | ||
) |