Skip to content

Commit

Permalink
#11512: Add sweeps for eltwise sharded ops
Browse files Browse the repository at this point in the history
  • Loading branch information
bfilipovicTT committed Dec 13, 2024
1 parent a318130 commit 27fe7a4
Show file tree
Hide file tree
Showing 8 changed files with 870 additions and 0 deletions.
109 changes: 109 additions & 0 deletions tests/sweep_framework/sweeps/eltwise/binary/add/add_sharded.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import json
import torch
import random
import ttnn
import math
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm
from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 120

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_spec": gen_sharded_spec_unary(16, layouts=["TILE_LAYOUT"]), # add op only supports tiled layout
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_b_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
},
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_spec,
input_a_dtype,
input_b_dtype,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

(
input_shape,
core_grid,
sharding_strategy,
shard_orientation,
tensor_hw_as_shard_shape,
input_layout,
) = parse_sharding_spec(input_spec)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)
torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype
)(input_shape)
golden_function = ttnn.get_golden_function(ttnn.add)
torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b)

sharded_config = ttnn.create_sharded_memory_config_(
shape=input_shape,
core_grid=core_grid,
strategy=sharding_strategy,
orientation=shard_orientation,
use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape,
)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=sharded_config,
)

input_tensor_b = ttnn.from_torch(
torch_input_tensor_b,
dtype=input_b_dtype,
layout=input_layout,
device=device,
memory_config=sharded_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.add(input_tensor_a, input_tensor_b, memory_config=sharded_config)
e2e_perf = stop_measuring_time(start_time)
output_tensor = ttnn.to_torch(output_tensor)

pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999)
return [pcc, e2e_perf]
127 changes: 127 additions & 0 deletions tests/sweep_framework/sweeps/eltwise/binary/div/div_sharded.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import json
import torch
import random
import ttnn
import math

import ttnn.device
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm
from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 120

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_spec": gen_sharded_spec_unary(2, layouts=["TILE_LAYOUT"]), # div op only supports tiled layout
"input_a_dtype": [ttnn.bfloat16],
"input_b_dtype": [ttnn.bfloat16],
"accurate_mode": [True, False],
"round_mode": [None, "floor", "trunc"],
},
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_spec,
input_a_dtype,
input_b_dtype,
accurate_mode,
round_mode,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

(
input_shape,
core_grid,
sharding_strategy,
shard_orientation,
tensor_hw_as_shard_shape,
input_layout,
) = parse_sharding_spec(input_spec)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)

if accurate_mode == False:
torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=0.1, high=100, dtype=torch.float32), input_b_dtype
)(input_shape)
signs_b = torch.randint(0, 2, input_shape) * 2 - 1
torch_input_tensor_b *= signs_b
else:
torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.div)
torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b)

sharded_config = ttnn.create_sharded_memory_config_(
shape=input_shape,
core_grid=core_grid,
strategy=sharding_strategy,
orientation=shard_orientation,
use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape,
)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=sharded_config,
)

input_tensor_b = ttnn.from_torch(
torch_input_tensor_b,
dtype=input_b_dtype,
layout=input_layout,
device=device,
memory_config=sharded_config,
)

start_time = start_measuring_time()
#
output_tensor = ttnn.div(
input_tensor_a, input_tensor_b, accurate_mode=accurate_mode, round_mode=round_mode, memory_config=sharded_config
)
e2e_perf = stop_measuring_time(start_time)
output_tensor = ttnn.to_torch(output_tensor)

pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999)
return [pcc, e2e_perf]
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import json
import torch
import random
import ttnn
import math

import ttnn.device
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm
from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 120

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"nightly": {
"input_spec": gen_sharded_spec_unary(4, layouts=["TILE_LAYOUT"]), # div op only supports tiled layout
"input_a_dtype": [ttnn.bfloat16],
"input_b_dtype": [ttnn.bfloat16],
"accurate_mode": [True, False],
"round_mode": [None, "floor", "trunc"],
},
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_spec,
input_a_dtype,
input_b_dtype,
accurate_mode,
round_mode,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

(
input_shape,
core_grid,
sharding_strategy,
shard_orientation,
tensor_hw_as_shard_shape,
input_layout,
) = parse_sharding_spec(input_spec)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)

if accurate_mode == False:
torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=0.1, high=100, dtype=torch.float32), input_b_dtype
)(input_shape)
signs_b = torch.randint(0, 2, input_shape) * 2 - 1
torch_input_tensor_b *= signs_b
else:
torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype
)(input_shape)

golden_function = ttnn.get_golden_function(ttnn.div_no_nan)
torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b)

sharded_config = ttnn.create_sharded_memory_config_(
shape=input_shape,
core_grid=core_grid,
strategy=sharding_strategy,
orientation=shard_orientation,
use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape,
)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=sharded_config,
)

input_tensor_b = ttnn.from_torch(
torch_input_tensor_b,
dtype=input_b_dtype,
layout=input_layout,
device=device,
memory_config=sharded_config,
)

start_time = start_measuring_time()
#
input_tensor_a = ttnn.div_no_nan(input_tensor_a, input_tensor_b, memory_config=sharded_config)
output_tensor = input_tensor_a
e2e_perf = stop_measuring_time(start_time)
output_tensor = ttnn.to_torch(output_tensor)

pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999)
return [pcc, e2e_perf]
Loading

0 comments on commit 27fe7a4

Please sign in to comment.