-
Notifications
You must be signed in to change notification settings - Fork 87
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#12559: add ttnn implementation for convnet_mnist model
- Loading branch information
1 parent
e649cda
commit 19cba61
Showing
9 changed files
with
504 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# Introduction | ||
|
||
Convnet Mnist implements a Convolutions to classify handwritten digits from the MNIST dataset. The MNIST dataset contains grayscale images of handwritten digits (0-9), each of size 32x32 pixels. | ||
|
||
# Platforms: | ||
GS E150, WH N150, WH N300 | ||
|
||
## How to Run | ||
|
||
To run the demo for digit classification using the MNIST model, follow these instructions: | ||
|
||
- Use the following command to run the MNIST model. | ||
|
||
``` | ||
pytest models/demos/convnet_mnist/demo/demo.py | ||
``` | ||
|
||
Maxpool and Softmax are used in torch inside the model. | ||
ISSUES: | ||
#12664 - [softmax](https://github.com/tenstorrent/tt-metal/issues/12664) | ||
#12642 - [maxpool](https://github.com/tenstorrent/tt-metal/issues/12642) | ||
|
||
|
||
### Owner: [vigneshkumarkeerthivasan](https://github.com/vigneshkeerthivasanx) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import ttnn | ||
|
||
|
||
def custom_preprocessor(parameters, device): | ||
parameters.conv1.bias = ttnn.to_device(parameters.conv1.bias, device) | ||
parameters.conv1.bias = ttnn.to_device(parameters.conv1.bias, device) | ||
|
||
parameters.fc1.weight = ttnn.to_device(parameters.fc1.weight, device) | ||
parameters.fc1.bias = ttnn.to_device(parameters.fc1.bias, device) | ||
parameters.fc2.weight = ttnn.to_device(parameters.fc2.weight, device) | ||
parameters.fc2.bias = ttnn.to_device(parameters.fc2.bias, device) | ||
|
||
return parameters |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import torch | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
|
||
def get_test_data(batch_size=64): | ||
transform = transforms.Compose( | ||
[ | ||
transforms.Resize((32, 32)), | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean=(0.05,), std=(0.05,)), | ||
] | ||
) | ||
|
||
test_dataset = torchvision.datasets.MNIST( | ||
root="./data", | ||
train=False, | ||
download=True, | ||
) | ||
|
||
batch = [] | ||
images = [] | ||
outputs = [] | ||
|
||
for i in range(batch_size): | ||
img, output = test_dataset[i] | ||
tensor = transform(img).unsqueeze(0) | ||
batch.append(tensor) | ||
images.append(img) | ||
outputs.append(output) | ||
|
||
batch = torch.cat(batch) | ||
return batch, images, outputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import torch | ||
import ttnn | ||
import pytest | ||
|
||
from pathlib import Path | ||
from loguru import logger | ||
|
||
from models.demos.convnet_mnist.tt.convnet_mnist import convnet_mnist, custom_preprocessor | ||
from models.demos.convnet_mnist import convnet_mnist_preprocessing | ||
from models.demos.convnet_mnist.convnet_mnist_utils import get_test_data | ||
from models.experimental.convnet_mnist.reference.convnet import ConvNet | ||
from ttnn.model_preprocessing import preprocess_model_parameters | ||
|
||
|
||
def model_location_generator(rel_path): | ||
internal_weka_path = Path("/mnt/MLPerf") | ||
has_internal_weka = (internal_weka_path / "bit_error_tests").exists() | ||
|
||
if has_internal_weka: | ||
return Path("/mnt/MLPerf") / rel_path | ||
else: | ||
return Path("/opt/tt-metal-models") / rel_path | ||
|
||
|
||
@pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True) | ||
def test_convnet_mnist(device, reset_seeds): | ||
model_path = model_location_generator("tt_dnn-models/ConvNetMNIST/") | ||
state_dict = str(model_path / "convnet_mnist.pt") | ||
state_dict = torch.load(state_dict) | ||
|
||
test_input, images, output = get_test_data(8) | ||
|
||
model = ConvNet() | ||
model.load_state_dict(state_dict) | ||
model.eval() | ||
torch_output = model(test_input) | ||
batch_size = len(test_input) | ||
|
||
parameters = preprocess_model_parameters( | ||
initialize_model=lambda: model, convert_to_ttnn=lambda *_: True, custom_preprocessor=custom_preprocessor | ||
) | ||
parameters = convnet_mnist_preprocessing.custom_preprocessor(parameters, device=device) | ||
|
||
ttnn_input = torch.permute(test_input, (0, 2, 3, 1)) | ||
ttnn_input = ttnn.from_torch(ttnn_input, dtype=ttnn.bfloat16, layout=ttnn.ROW_MAJOR_LAYOUT) | ||
|
||
ttnn_output = convnet_mnist( | ||
input_tensor=ttnn_input, | ||
device=device, | ||
parameters=parameters, | ||
) | ||
ttnn_output = ttnn.to_torch(ttnn_output) | ||
|
||
_, torch_predicted = torch.max(torch_output.data, -1) | ||
_, ttnn_predicted = torch.max(ttnn_output.data, -1) | ||
|
||
correct = 0 | ||
for i in range(batch_size): | ||
if output[i] == ttnn_predicted[i]: | ||
correct += 1 | ||
accuracy = correct / (batch_size) | ||
|
||
logger.info(f" Accuracy for {batch_size} Samples : {accuracy}") | ||
logger.info(f"torch_predicted {torch_predicted.squeeze()}") | ||
logger.info(f"ttnn_predicted {ttnn_predicted.squeeze()}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import torch | ||
import pytest | ||
import ttnn | ||
import time | ||
from pathlib import Path | ||
|
||
from torchvision import models | ||
from loguru import logger | ||
import ttnn | ||
from ttnn.model_preprocessing import preprocess_model_parameters | ||
from models.utility_functions import ( | ||
enable_persistent_kernel_cache, | ||
disable_persistent_kernel_cache, | ||
) | ||
from models.perf.perf_utils import prep_perf_report | ||
from models.perf.device_perf_utils import run_device_perf, check_device_perf, prep_device_perf_report | ||
from models.demos.convnet_mnist.tt.convnet_mnist import convnet_mnist, custom_preprocessor | ||
from models.demos.convnet_mnist import convnet_mnist_preprocessing | ||
from models.experimental.convnet_mnist.reference.convnet import ConvNet | ||
from models.utility_functions import is_grayskull | ||
|
||
|
||
def get_expected_times(convnet_mnist): | ||
return (15.0, 9.2) | ||
|
||
|
||
def model_location_generator(rel_path): | ||
internal_weka_path = Path("/mnt/MLPerf") | ||
has_internal_weka = (internal_weka_path / "bit_error_tests").exists() | ||
|
||
if has_internal_weka: | ||
return Path("/mnt/MLPerf") / rel_path | ||
else: | ||
return Path("/opt/tt-metal-models") / rel_path | ||
|
||
|
||
@pytest.mark.models_performance_bare_metal | ||
@pytest.mark.parametrize("device_params", [{"l1_small_size": 24576}], indirect=True) | ||
@pytest.mark.parametrize( | ||
"batch_size, act_dtype, weight_dtype, math_fidelity", ((1, ttnn.bfloat16, ttnn.bfloat16, ttnn.MathFidelity.LoFi),) | ||
) | ||
@pytest.mark.parametrize( | ||
"input_shape", | ||
[ | ||
(1, 1, 32, 32), | ||
], | ||
) | ||
def test_convnet_mnist( | ||
device, | ||
input_shape, | ||
batch_size, | ||
act_dtype, | ||
weight_dtype, | ||
math_fidelity, | ||
): | ||
disable_persistent_kernel_cache() | ||
model_path = model_location_generator("tt_dnn-models/ConvNetMNIST/") | ||
state_dict = str(model_path / "convnet_mnist.pt") | ||
state_dict = torch.load(state_dict) | ||
|
||
input_tensor = torch.randn(input_shape, dtype=torch.bfloat16) | ||
input_tensor = torch.permute(input_tensor, (0, 2, 3, 1)) | ||
|
||
model = ConvNet() | ||
model.load_state_dict(state_dict) | ||
model.eval() | ||
|
||
parameters = preprocess_model_parameters( | ||
initialize_model=lambda: model, convert_to_ttnn=lambda *_: True, custom_preprocessor=custom_preprocessor | ||
) | ||
parameters = convnet_mnist_preprocessing.custom_preprocessor(parameters, device=device) | ||
|
||
durations = [] | ||
for i in range(2): | ||
start = time.time() | ||
ttnn_input = ttnn.from_torch(input_tensor, dtype=ttnn.bfloat16) | ||
|
||
ttnn_output = convnet_mnist( | ||
input_tensor=ttnn_input, | ||
device=device, | ||
parameters=parameters, | ||
) | ||
output = ttnn.from_device(ttnn_output) | ||
end = time.time() | ||
durations.append(end - start) | ||
enable_persistent_kernel_cache() | ||
|
||
inference_and_compile_time, inference_time, *_ = durations | ||
|
||
expected_compile_time, expected_inference_time = get_expected_times("convnet_mnist") | ||
prep_perf_report( | ||
model_name="convnet_mnist", | ||
batch_size=batch_size, | ||
inference_and_compile_time=inference_and_compile_time, | ||
inference_time=inference_time, | ||
expected_compile_time=expected_compile_time, | ||
expected_inference_time=expected_inference_time, | ||
comments="", | ||
inference_time_cpu=0.0, | ||
) | ||
|
||
logger.info(f"Compile time: {inference_and_compile_time - inference_time}") | ||
logger.info(f"Inference time: {inference_time}") | ||
logger.info(f"Samples per second: {1 / inference_time * batch_size}") | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"batch_size, expected_perf", | ||
[ | ||
[1, 105.710], | ||
], | ||
) | ||
@pytest.mark.models_device_performance_bare_metal | ||
def test_perf_device_bare_metal_convnet_mnist(batch_size, expected_perf): | ||
subdir = "ttnn_convnet_mnist" | ||
num_iterations = 1 | ||
margin = 0.03 | ||
expected_perf = 1753.5 if is_grayskull() else 2705.5 | ||
|
||
command = f"pytest tests/ttnn/integration_tests/convnet_mnist/test_convnet_mnist.py" | ||
cols = ["DEVICE FW", "DEVICE KERNEL", "DEVICE BRISC KERNEL"] | ||
|
||
inference_time_key = "AVG DEVICE KERNEL SAMPLES/S" | ||
expected_perf_cols = {inference_time_key: expected_perf} | ||
|
||
post_processed_results = run_device_perf(command, subdir, num_iterations, cols, batch_size) | ||
expected_results = check_device_perf(post_processed_results, margin, expected_perf_cols) | ||
prep_device_perf_report( | ||
model_name=f"ttnn_functional_convnet_mnist{batch_size}", | ||
batch_size=batch_size, | ||
post_processed_results=post_processed_results, | ||
expected_results=expected_results, | ||
comments="", | ||
) |
Oops, something went wrong.