Skip to content

Commit

Permalink
[tt-train] Add kahan summation in AdamW (#15518)
Browse files Browse the repository at this point in the history
### Problem description
bfloat16 has wide range, but is not as precise as float32. Some of the
parameters are not updated due to small magnitude of the gradients
(after multiplication by learning rate), as an example: gamma in
LayerNorm.

### What's changed
Add kahan summation flag to enable kahan summation when update weights. 

### Checklist
- [x] Post commit CI passes
https://github.com/tenstorrent/tt-metal/actions/runs/12128966379
- [x] New/Existing tests provide coverage for changes

<img width="1620" alt="image"
src="https://github.com/user-attachments/assets/b19ecc48-0a74-49b5-b55a-60198eb8ce9d">
  • Loading branch information
rfurko-tt authored Dec 2, 2024
1 parent 245437c commit 070a226
Show file tree
Hide file tree
Showing 3 changed files with 50 additions and 5 deletions.
5 changes: 5 additions & 0 deletions tt-train/sources/examples/nano_gpt/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,8 @@ struct TrainingConfig {
uint32_t max_steps = 5000;
float learning_rate = 3e-4F;
float weight_decay = 1e-2F;
// works only for AdamW
bool use_kahan_summation = false;
std::string model_path;
std::string data_path;
ttml::models::gpt2::TransformerConfig transformer_config;
Expand All @@ -157,6 +159,7 @@ TrainingConfig parse_config(const YAML::Node &yaml_config) {
config.max_steps = training_config["max_steps"].as<uint32_t>();
config.learning_rate = training_config["learning_rate"].as<float>();
config.weight_decay = training_config["weight_decay"].as<float>();
config.use_kahan_summation = training_config["use_kahan_summation"].as<bool>(config.use_kahan_summation);
config.model_path = training_config["model_path"].as<std::string>("");
config.data_path = training_config["data_path"].as<std::string>(std::string(DATA_FOLDER) + "/shakespeare.txt");
config.transformer_config = ttml::models::gpt2::read_config(training_config["transformer_config"]);
Expand Down Expand Up @@ -295,9 +298,11 @@ int main(int argc, char **argv) {
auto adamw_params = ttml::optimizers::AdamWConfig();
adamw_params.lr = config.learning_rate;
adamw_params.weight_decay = config.weight_decay;
adamw_params.use_kahan_summation = config.use_kahan_summation;
fmt::print("AdamW configuration:\n");
fmt::print(" Learning rate: {}\n", adamw_params.lr);
fmt::print(" Weight decay: {}\n", adamw_params.weight_decay);
fmt::print(" Use Kahan summation: {}\n", adamw_params.use_kahan_summation);
auto optimizer = ttml::optimizers::AdamW(model->parameters(), adamw_params);

if (!config.model_path.empty() && std::filesystem::exists(config.model_path)) {
Expand Down
46 changes: 41 additions & 5 deletions tt-train/sources/ttml/optimizers/adamw.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,18 @@ namespace {

const std::string kFirstMoment = "first_moment/";
const std::string kSecondMoment = "second_moment/";
const std::string kKahanCompensation = "kahan_compensation/";

} // namespace

namespace ttml::optimizers {

MorehAdamW::MorehAdamW(autograd::NamedParameters parameters, const AdamWConfig& config) :
OptimizerBase(std::move(parameters)), m_config(config) {
if (m_config.use_kahan_summation) {
throw std::runtime_error("MorehAdamW: Kahan summation is not supported. Use default AdamW instead.");
}

for (const auto& [key, tensor_ptr] : m_parameters) {
if (tensor_ptr->get_requires_grad()) {
m_first_moment.emplace(
Expand Down Expand Up @@ -137,6 +142,13 @@ AdamW::AdamW(autograd::NamedParameters parameters, const AdamWConfig& config) :
autograd::create_tensor(
core::zeros_like(tensor_ptr->get_value(autograd::PreferredPrecision::FULL)),
/* requires_grad */ false));
if (m_config.use_kahan_summation) {
m_kahan_compensation.emplace(
key,
autograd::create_tensor(
core::zeros_like(tensor_ptr->get_value(autograd::PreferredPrecision::FULL)),
/* requires_grad */ false));
}
}
}
}
Expand Down Expand Up @@ -188,11 +200,29 @@ void AdamW::step() {
// weights -= lr * first_moment_hat / (sqrt(second_moment_hat) + epsilon)
first_moment_ptr->set_value(first_moment);
second_moment_ptr->set_value(second_moment);
tensor_ptr->set_value(ttnn::subtract(
tensor_ptr->get_value(autograd::PreferredPrecision::FULL),
ttnn_fixed::divide(
ttnn::multiply(first_moment_hat, m_config.lr),
ttnn::add(ttnn::sqrt(second_moment_hat), m_config.epsilon))));

auto update_tensor = ttnn_fixed::divide(
ttnn::multiply(first_moment_hat, -m_config.lr), ttnn::add(ttnn::sqrt(second_moment_hat), m_config.epsilon));

if (!m_config.use_kahan_summation) {
tensor_ptr->set_value(ttnn::add(tensor_ptr->get_value(autograd::PreferredPrecision::FULL), update_tensor));
} else {
auto value_tensor = tensor_ptr->get_value(autograd::PreferredPrecision::FULL);

const auto& kahan_compensation_ptr = m_kahan_compensation.at(key);
// A running compensation for lost low-order bits
auto compensation_tensor = kahan_compensation_ptr->get_value(autograd::PreferredPrecision::FULL);
// Adjust the update with the compensation
auto adjusted_update = ttnn::subtract(update_tensor, compensation_tensor);
// Update the value with the adjusted update
auto result = ttnn::add(value_tensor, adjusted_update);
// (result - value_tensor) cancels the high-order part of adjusted_update;
// subtracting adjusted_update recovers negative (low part of adjusted_update)
compensation_tensor = ttnn::subtract(ttnn::subtract(result, value_tensor), adjusted_update);

tensor_ptr->set_value(result);
kahan_compensation_ptr->set_value(compensation_tensor);
}
}
}

Expand All @@ -206,6 +236,10 @@ void AdamW::step() {
state_dict.emplace(kSecondMoment + key, second_moment);
}

for (const auto& [key, kahan_compensation] : m_kahan_compensation) {
state_dict.emplace(kKahanCompensation + key, kahan_compensation);
}

return state_dict;
}

Expand All @@ -215,6 +249,8 @@ void AdamW::set_state_dict(const autograd::NamedParameters& dict) {
m_first_moment[key.substr(kFirstMoment.size())] = tensor;
} else if (key.starts_with(kSecondMoment)) {
m_second_moment[key.substr(kSecondMoment.size())] = tensor;
} else if (key.starts_with(kKahanCompensation)) {
m_kahan_compensation[key.substr(kKahanCompensation.size())] = tensor;
} else {
throw std::runtime_error(fmt::format("AdamW: Invalid key in state dict. Key = {}", key));
}
Expand Down
4 changes: 4 additions & 0 deletions tt-train/sources/ttml/optimizers/adamw.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,9 @@ struct AdamWConfig {
float epsilon{1e-8F};
float weight_decay{0.01F};
// TODO: add amsgrad

// flag to enable kahan summation to reduce floating point errors
bool use_kahan_summation{false};
};

class MorehAdamW : public OptimizerBase {
Expand Down Expand Up @@ -58,6 +61,7 @@ class AdamW : public OptimizerBase {
AdamWConfig m_config;
autograd::NamedParameters m_first_moment;
autograd::NamedParameters m_second_moment;
autograd::NamedParameters m_kahan_compensation;
};

} // namespace ttml::optimizers

0 comments on commit 070a226

Please sign in to comment.