Skip to content

Commit

Permalink
update visualisation and stash Cosserat
Browse files Browse the repository at this point in the history
  • Loading branch information
tduretz committed Dec 7, 2024
1 parent 6df84ec commit 2bcb3e5
Show file tree
Hide file tree
Showing 7 changed files with 1,133 additions and 321 deletions.
7 changes: 6 additions & 1 deletion JuliaVisualisation/Main_MatrixCheckSolve_MD7.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ function main()

# File
path ="/Users/tduretz/REPO/MDOODZ7.0/MDLIB/"
filename = string(path, "Stokes_01cpu_step1429_iter00.gzip.h5")
filename = string(path, "Stokes_01cpu_step01_iter00.gzip.h5")
# path ="/Users/tduretz/REPO/MDOODZ7.0/RUNS/RiverTom/"
# filename = string(path, "Stokes_01cpu_step229_iter00.gzip.h5")
# Matrix block A
Expand Down Expand Up @@ -75,6 +75,11 @@ function main()
model = ExtractData(filename,"/model/params");
nx, nz, Δx, Δz = model

@show size(MA)
@show size(MB)
@show size(MC)
@show size(MD)

# Spies
Msc = MA - MB*(MD*MC);
@show norm(MA-MA')
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,10 +49,10 @@ import Statistics:mean
# Plasticity
C = 5e7
fric = 30*π/180
dil = 10*π/180
ηvp = 0.0
dil = 0*π/180
ηvp = 0*1e21
# Pressure in extension
X = 1 .+.- 1).*sind.(2*θ)
X = 1 / (sqrt((δ^2-1)*cos(2*θ)^2 + 1)/δ)
ϕeff = asin(sin(fric) / X)
@show ϕeff*180/π
σH = -Pl*(1-sin(ϕeff))/(1+sin(ϕeff))
Expand Down Expand Up @@ -187,15 +187,10 @@ import Statistics:mean
2.0*ani*d1 2.0-2.0*ani*d1 2.0*ani*d2;
-2.0*ani*d2 2.0*ani*d2 1.0 + 2.0*ani*(d1 - 0.5);]



E = [ε̇xxd; ε̇yyd; ε̇xyd]
τ0 = [τxx0/ηe; τyy0/ηe; τxy0/ηe]
Eeff = E + A\τ0

@show Eeff


b = A\τ0
Eeff = E + b./[1; 1; 2]

Da11 = 2.0 - 2.0*ani*d1;
Da12 = 2.0*ani*d1;
Expand Down Expand Up @@ -252,8 +247,8 @@ import Statistics:mean

#####################

τii_yield = P*sin(fric) .+ C#*cos(fric)
τii_yield_min = τii_yield * (1 / (1 +-1)*sin(2*θ[i])))
τii_yield = P*sin(fric) .+ C*cos(fric)
τii_yield_min = τii_yield*sqrt((δ^2-1)*cos(2*θ[i])^2 + 1)/δ

ax3 = Axis(f[1, 2], title = L"$$Stress profile ($\delta = 3$)", xlabel = L"$τ_\mathrm{II}$ [GPa]")
lines!(ax3, τii_rot1./1e9, yc./1e3, label=L"$\sqrt{Y_2^{'}}$", color=:blue )
Expand All @@ -268,6 +263,8 @@ import Statistics:mean
axislegend(position=:rb)
display(f)

save("/Users/tduretz/PowerFolders/_manuscripts/RiftingAnisotropy/Figures/ChristmasTreeAnisotropy.png", f, px_per_unit = 4)

@show τii_rot1./τii_cart1

end
Expand Down
Loading

0 comments on commit 2bcb3e5

Please sign in to comment.