Skip to content

ta-data-pt-rmt/lab-dataframe-calculations

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Ironhack Logo

Lab | Dataframe Calculation and Transformation

Introduction

We have learned the basics of dataframe calculation, aggregation, and summarization in the lesson. In this lab you will practice the functions covered in the lessons and learn more advanced ones by solving a series of challenges.

In this lab we also want you to focus on refining your problem-solving process in addition to completing the challenges. Data analysis is an iterative problem-solving process. You will need to break down a complex problem into a subset of less complex problems, then tackle each sub problems in a progressive order. You may need to further break down the sub problems into sub-sub problems and so on so forth depending on the complexity of those problems. You will keep breaking down the problems until you are able to solve each of them.

During the problem-solving process, you are required to constantly test your solutions and reflect on your goals and problem-solving strategies. You may be required to revise the problem-solving strategies and sometimes redefine the problem subsets based on your latest discoveries.

Keep in mind the general guidelines above when you conduct data analysis in this lab and in the future. You need to learn this scientific research methodology if you want to become a successful data analyst. For a detailed explanation of the iterative data analysis workflow, watch this YouTube video.

You are required to watch the above video before proceeding.

Getting Started

Launch main.ipynb, challenge-1.ipynb, challenge-2.ipynb, and challenge-3.ipynb in the your-code directory of this lab. Take the exercises following the step-by-step instructions.

Deliverables

  • challenge-1.ipynb, challenge-2.ipynb and challenge-3.ipynb are mandatory challenges that you must submit and will help you acquire the basics of dataframe calculation and transformation.

Submission

Upon completion, add your deliverables to git. Then commit git and push your branch to the remote.

Resources

Data Analysis Iteration

Pokemon with Stats

Google Search: get all numeric columns in dataframe

One Hot Encoding

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published