Skip to content

stanford-iprl-lab/franka-panda-iprl

Repository files navigation

Franka Panda

Redis driver for the Franka Panda.

NOTE: The master branch was last tested on Ubuntu 16.04 on 11/10/2020.

Installation

This driver has been tested on Ubuntu 16.04 with C++14.

  1. Set up your Panda robot and controller following the instructions on this page. Connect your computer to the robot controller (not the robot directly).

  2. CMake 3.11 or higher is required to download the external dependencies. Ubuntu 16.04 comes with CMake 3.5. The easiest way to upgrade is through pip:

    pip install cmake
    
  3. Install dependencies

    sudo apt install libpoco-dev
    
  4. Build the driver

    cd <franka-panda.git>
    mkdir build
    cd build
    cmake ..
    make
    
  5. If you run into an error during the cmake step, try installing the following:

    sudo apt install doxygen python3-dev
    

    Then clear the build folder and re-run cmake.

  6. If you want to use the python wrapper for this library, run cmake with the following option:

    cmake .. -DFRANKA_PANDA_BUILD_PYTHON
    make
    

Driver Usage

  1. Open the robot interface by connecting to the ip address of the controller in your web browser (e.g. 172.16.0.2).

  2. Open the User stop and the robot brakes through the web interface.

  3. Launch a Redis server instance if one is not already running.

    redis-server
    
  4. Open a terminal and go to the driver's bin folder.

    cd <franka-panda.git>/bin
    
  5. Launch the driver with a YAML configuration file.

    ./franka_redis_driver ../resources/default.yaml
    
  6. Kill the driver with <ctrl-c>. This will reset Redis keys and terminate the driver threads gracefully. If the driver doesn't terminate, it may be stuck trying to connect to a non-existent gripper. To prevent this from happening, set use_gripper to false in the YAML configuration file.

Franka Panda Dynamics Library

In addition to the Redis driver, this repo provides C++ and Python bindings to the internal Franka Panda dynamics binary.

C++

  1. If the driver has already been compiled, you can use the following lines in your CMakeLists.txt:

    find_package(franka_panda REQUIRED)
    target_link_libraries(<target> PRIVATE franka_panda::franka_panda)
    
  2. Include the following header in your source code:

    #include <franka_panda/franka_panda.h>
    

Python

  1. Activate your Python virtual environment (e.g. pipenv).

  2. Locally install the frankapanda module:

    cd <franka-panda.git>
    pip install -e .
    
  3. Import the frankapanda module in your Python code:

    import frankapanda
    

Redis Keys

The keys can be specified in the YAML configuration file (see <franka-panda.git>/resources/default.yaml). For reference, the default keys are:

Robot control commands

The control mode should be set after the corresponding control command has already been set (e.g. set tau = "0 0 0 0 0 0 0" before mode = torque), or simultaneously with MSET. Otherwise, the robot may try to execute control with stale command values.

  • franka_panda::control::tau: Desired control torques used during torque control mode. [7d array (e.g. "0 0 0 0 0 0 0")].
  • franka_panda::control::pose: Desired transformation matrix from end-effector to world frame for cartesian_pose control, or desired delta pose for delta_cartesian_pose control. [4x4 array (e.g. "1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1")].
  • franka_panda::control::mode: Control mode. Note that the cartesian_pose controllers are blocking and must reach the target pose before receiving the next command. The mode will be set to idle after these controllers have finished running. [One of {"idle", "floating", "torque", "cartesian_pose", "delta_cartesian_pose"}].

Gripper control commands

The gripper has two modes: grasp and move. Both of these commands are blocking and must finish before receiving the next command.

The move command takes in a width and speed. The grasp command takes in width, speed, force, and grasp_tol.

The control mode should be set after the control parameters have already been set (e.g. set width = 0 and speed = 0.01 before mode = move), or simultaneously with MSET.

  • franka_panda::gripper::control::width: Desired gripper width. [Positive double].
  • franka_panda::gripper::control::speed: Max gripper speed [Positive double].
  • franka_panda::gripper::control::force: Max gripper force (used only for grasp c\ommand). [Positive double].
  • franka_panda::gripper::control::grasp_tol: Width tolerances to determine whether object is grasped. [Positive 2d array (e.g. "0.05 0.05")].
  • franka_panda::gripper::control::mode: Gripper control mode. After a control command has finished, the driver will reset the mode to idle. [One of {"idle", "grasp", "move"}].

Robot status

These keys will be set by the driver in response to control commands.

  • franka_panda::driver::status: If the driver turns off (either due to a robot error or user interrupt signal), the controller should stop immediately. Restarting the driver with an old controller already running is dangerous. [One of {"running", "off"}].
  • franka_panda::control::status: If the cartesian pose controller successfully reaches the target pose, the control status will be set to finished. This way the controller knows when to execute the next cartesian pose command. [One of {"running", "finished", "error"}].
  • franka_panda::gripper::status: If the gripper is not running, the status will be off, and during a gripper command, it will be grasping. When a gripper command finishes, the status will be set to grasped if the object has been classified as grasped or not_grasped otherwise. [One of {"off", "grasping", "grasped", "not_grasped"}].

Robot sensor values

These keys will be set by the driver at 1000Hz.

  • franka_panda::sensor::q: Joint configuration. [7d array (e.g. "0 0 0 0 0 0 0")].
  • franka_panda::sensor::dq: Joint velocity. [7d array (e.g. "0 0 0 0 0 0 0")].
  • franka_panda::sensor::tau: Joint torques. [7d array (e.g. "0 0 0 0 0 0 0")].
  • franka_panda::sensor::dtau: Joint torque derivatives. [7d array (e.g. "0 0 0 0 0 0 0")].
  • franka_panda::gripper::sensor::width: Gripper width. [Positive double].

Robot model

These keys will be set by the driver once at the start.

  • franka_panda::model::inertia_ee: Inertia of the attached end-effector. This should be attached as a load to the end-effector when computing dynamics quantities with the Franka Panda Dynamics Library. [JSON {m: <mass: double>, com: <center of mass: array[double[3]]>, I_com: <inertia at com: array[double[6]]>}].
  • franka_panda::gripper::model::max_width: Max width of the gripper computed via homing. [Positive double].

Dynamics Library API Quick Reference

Both the Model class and the dynamics algorithms fall under the following namespaces:

  • C++: franka_panda
  • Python: frankapanda

Model

  • dof: Degrees of freedom.
    • C++: size_t Model::dof()
    • Python: Model.dof: int
  • q: Joint position.
    • C++: const Eigen::VectorXd& Model::q(), void Model::set_q(const Eigen::VectorXd& q)
    • Python: Model.q: numpy.ndarray
  • dq: Joint velocity.
    • C++: const Eigen::VectorXd& Model::dq(), void Model::set_dq(const Eigen::VectorXd& dq)
    • Python: Model.dq: numpy.ndarray
  • m_load: Load mass.
    • C++: double Model::m_load(), void Model::set_m_load(double m)
    • Python: Model.m_load: int
  • com_load: Load center of mass.
    • C++: const Eigen::Vector3d& Model::com_load(), void Model::set_com_load(const Eigen::Vector3d& com)
    • Python: Model.com_load: numpy.ndarray
  • I_com_load: Load inertia as a vector ([Ixx, Iyy, Izz, Ixy, Ixz, Iyz]).
    • C++: Eigen::Vector6d Model::I_com_load(), void Model::set_I_com_load(const Eigen::Vector6d& I_com)
    • Python: Model.I_com_load: numpy.ndarray
  • I_com_load_matrix: Load inertia as a 3x3 matrix.
    • C++: const Eigen::Matrix3d& Model::I_com_load_matrix(), void Model::set_I_com_load_matrix(const Eigen::Matrix3d& I_com)
    • Python: Model.I_com_load_matrix: numpy.ndarray
  • set_load(): Parse the load json string output by the driver.
    • C++: void Model::set_load(const std::string& json_load)
    • Python: Model.set_load(json_load: str)
  • g: Gravity vector.
    • C++: const Eigen::Vector3d& Model::g()
    • Python: Model.g: numpy.ndarray
  • inertia_compensation: Terms added to the last 3 diagonal terms of the joint space inertia matrix.
    • C++: const Eigen::Vector3d& Model::inertia_compensation(), void Model::set_inertia_compensation(const Eigen::Vector3d& coeff)
    • Python: Model.inertia_compensation: numpy.ndarray
  • stiction_coefficients: Stiction coefficients for the last 3 joints.
    • C++: const Eigen::Vector3d& Model::stiction_coefficients(), void Model::set_stiction_coefficients(const Eigen::Vector3d& coeff)
    • Python: Model.stiction_coefficients: numpy.ndarray
  • stiction_activations: Threshold above which stiction compensation should be applied for the last 3 joints.
    • C++: const Eigen::Vector3d& Model::stiction_activations(), void Model::set_stiction_activations(const Eigen::Vector3d& coeff)
    • Python: Model.stiction_activations: numpy.ndarray

Dynamics Algorithms

  • Cartesian Pose: Compute the pose of the desired link.
    • C++: Eigen::Isometry3d CartesianPose(const Model& model, int link = -1)
    • Python: cartesian_pose(model: Model, link: int) -> numpy.ndarray
  • Jacobian: Compute the basic Jacobian of the desired link.
    • C++: Eigen::Matrix6Xd Jacobian(const Model& model, int link = -1)
    • Python: jacobian(model: Model, link: int) -> numpy.ndarray
  • Inertia: Compute the joint space inertia matrix.
    • C++: Eigen::MatrixXd Inertia(const Model& model)
    • Python: inertia(model: Model) -> numpy.ndarray
  • Centrifugal Coriolis: Compute the joint space centrifugal/Coriolis forces.
    • C++: Eigen::VectorXd CentrifugalCoriolis(const Model& model)
    • Python: centrifugal_coriolis(model: Model) -> numpy.ndarray
  • Gravity: Compute the joint space gravity torque.
    • C++: Eigen::VectorXd Gravity(const Model& model)
    • Python: gravity(model: Model) -> numpy.ndarray
  • Friction: Compute the Franka Panda stiction compensation torques to be added (by the user) to the input torques of the last 3 joints. Torques between stiction_activations and stiction_coefficients will be clipped to stiction_coefficients. Torques below stiction_activations smoothly decay to 0. Torques above stiction_coefficients are unaffected.
    • C++: Eigen::VectorXd Friction(const Model& model, Eigen::Ref<const Eigen::VectorXd> tau)
    • Python: friction(model: Model, tau: numpy.ndarray) -> numpy.ndarray

Examples

To run the example control apps, you will need to perform the following additional steps.

  1. Download and compile spatial_dyn.
  2. Rebuild the driver (step 3 in the Install section above).

The apps are provided in both C++ and Python:

C++

  1. Build the example app:

    cd <franka-panda.git>/examples/opspace
    mkdir build
    cd build
    cmake ..
    make
    
  2. Run the app (only use the --sim flag for simulation when the driver is not running):

    cd <franka-panda.git>/examples/opspace/bin
    ./franka_panda_opspace ../../../resources/franka_panda.urdf --sim
    

Python

  1. Activate the Python virtual environment above where you installed the frankapanda module. An example Pipfile is provided in this repo.

    cd <franka-panda.git>
    pipenv install --three
    pipenv shell
    
  2. Locally install the spatialdyn module (look in ~/.cmake/packages/spatial_dyn for a hint of where it's located):

    cd <spatial-dyn.git>
    pip install -e .
    
  3. Run the app (only use the --sim flag for simulation when the driver is not running):

    cd <franka-panda.git>/examples/opspace/python
    ./franka_panda_opspace.py ../../../resources/franka_panda.urdf --sim
    

About

IPRL's Franka Panda Driver and Operational Space Controller

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •