Skip to content

Releases: srlearn/relational-datasets

Regression and Classification Set + Recommended Loading Scripts

03 Nov 18:51
66a0ad1
Compare
Choose a tag to compare

What's Changed

Release Notes: https://srlearn.github.io/relational-datasets/changelog/#v040-2022-11-03

  • ✨ Bump datasets to v0.0.6, Add california_housing and roofworld20 by @hayesall in #28
  • 🚧 Bump codecov-action to v3 by @hayesall in #29
  • ✨ Dataset loading recommendations by @hayesall in #30
  • 🔧 Set pythonpublish.yml to use pypi-publish by @hayesall in #31
  • 📝 Add changelog entry for v0.4.0 by @hayesall in #32

Full Changelog: v0.3.0...v0.4.0

Unique names assumption and avoiding type conflicts

20 Jun 22:12
5dd3fbc
Compare
Choose a tag to compare

What's Changed

  • 🐛 Append variable name to constant in from_numpy by @hayesall in #25
  • 📝 Documentation updates / fix default handler to use Python by @hayesall in #27
  • 📝 Update notebooks to align with variable name changes by @hayesall in #26

Full Changelog:

Multiclass support

05 Dec 00:11
3253dc1
Compare
Choose a tag to compare

Software Changes:

  • Add multiclass support to convert.from_numpy

Documentation:

  • Add notebook with overview on converting multiclass vector datasets

Testing:

  • Add tests for convert.from_numpy

Drug Interactions and Toy Machines

01 Dec 17:46
ee06caf
Compare
Choose a tag to compare

Software Changes

  • Add drug_interactions and toy_machines datasets
  • Add v0.0.5 as the latest srlearn/datasets release

v0.2.0

27 Aug 16:07
7936254
Compare
Choose a tag to compare

Software Changes:

  • Add convert module with from_numpy implementation to convert binary
    classification and regression datasets based on ordinal encodings.
  • Fix type annotations in relational_datasets.request
  • Fix type annotations in relational_datasets.types

Documentation:

  • Add tutorial for converting vector/propositional datasets to relational
  • Add mkdocs dependency: pymdownx.tasklist
  • Add binder and colab launch badges to Jupyter notebook tutorials

Testing:

  • Add lgtm build step + README badge
  • Add codecov build step + README badge
  • Add numpy>=1.20.0 as an optional setup target, and test against it
    (this is the earliest version of numpy where type annotations for mypy
    seem to be consistently available)

v0.1.1 - Split loading and deserializing / Project Documentation

10 Aug 14:22
f3e2fe2
Compare
Choose a tag to compare

Software Changes:

  • Bump default dataset version: v0.0.3v0.0.4.
  • Between v0.0.3 and v0.0.4 of srlearn/datasets, all zipfiles now have the version number appended
    (e.g. toy_cancer_v0.0.4.zip). Add logic to request the correct filename from GitHub.
  • Add deserialize_zipfile function, split out code for pulling zipfile content from the load method.
  • Add private _make_file_path function to handle where zipfiles are stored on a user's filesystem.
  • Move RelationalDataset type into relational_datasets/types.py
  • Fix hayesall/relational_datasetssrlearn/relational_datasets in setup.py
  • Clarify typing.Optional in function signatures where default file paths are allowed.
  • Add __version__ to the main __init__, so print(relational_datasets.__version__) is valid.

Documentation:

  • Add mkdocs builds with each push to the main branch.
  • Add requirements_dev.txt with requirements to build documentation.
  • Add docs/build._docs.py to build a Downloads page and an overview of each dataset pulled from the srlearn/datasets repository.
  • Add docs/notebooks/ directory for literate tutorials
    • Add 00_loading_and_fetching.ipynb
  • Pages for functions and types:
    • types.RelationalDataset
    • request.deserialize_zipfile
    • request.fetch
    • request.latest_version
    • request.load

🔖 Initial Release

21 Jul 15:31
d44c1a3
Compare
Choose a tag to compare

Release basic specification:

  • load(name: str, version: str = "", fold: int = 1) -> Tuple[RelationalDataset, RelationalDataset]: Load examples and facts for a dataset/version/fold
  • fetch(name: str, version: str = "") -> str: Download and cache an archive locally
  • get_data_home(data_home=None) -> str: Get the path to the cache directory
  • clear_data_home(data_home=None) -> None: Remove the cache directory
  • latest_version() -> str: Check latest version of datasets on GitHub