forked from lidq92/LinearityIQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_demo.py
62 lines (53 loc) · 2.44 KB
/
test_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Author: Dingquan Li
# Email: dingquanli AT pku DOT edu DOT cn
# Date: 2020/1/14
import torch
from IQAmodel import IQAModel
import os
import numpy as np
import random
from argparse import ArgumentParser
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms.functional import resize, to_tensor, normalize
from PIL import Image
import h5py
def run(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = IQAModel(arch=args.arch, pool=args.pool, use_bn_end=args.use_bn_end, P6=args.P6, P7=args.P7).to(device) #
im = Image.open(args.img_path).convert('RGB') #
if args.resize: # resize or not?
im = resize(im, (args.resize_size_h, args.resize_size_w)) #
im = to_tensor(im).to(device)
im = normalize(im, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
checkpoint = torch.load(args.trained_model_file)
model.load_state_dict(checkpoint['model'])
model.eval()
with torch.no_grad():
y = model(im.unsqueeze(0))
k = checkpoint['k']
b = checkpoint['b']
print('The image quality score is {}'.format(y[-1].item() * k[-1] + b[-1]))
if __name__ == "__main__":
parser = ArgumentParser(description='Test Demo for LinearityIQA')
parser.add_argument('--arch', default='resnext101_32x8d', type=str,
help='arch name (default: resnext101_32x8d)')
parser.add_argument('--pool', default='avg', type=str,
help='pool method (default: avg)')
parser.add_argument('--use_bn_end', action='store_true',
help='Use bn at the end of the output?')
parser.add_argument('--P6', type=int, default=1,
help='P6 (default: 1)')
parser.add_argument('--P7', type=int, default=1,
help='P7 (default: 1)')
parser.add_argument('--trained_model_file', default='checkpoints/p1q2.pth', type=str,
help='trained_model_file')
parser.add_argument('--img_path', default='data/1000.JPG', type=str,
help='test image path')
parser.add_argument('--resize', action='store_true',
help='Resize?')
parser.add_argument('-rs_h', '--resize_size_h', default=498, type=int,
help='resize_h (default: 498)')
parser.add_argument('-rs_w', '--resize_size_w', default=664, type=int,
help='resize_w (default: 664)')
args = parser.parse_args()
run(args)