Skip to content

Commit

Permalink
add pie wedge segmented aperture. Add custom_function option to utils…
Browse files Browse the repository at this point in the history
….radial_profile. And tests for both
  • Loading branch information
mperrin committed Dec 20, 2023
1 parent 9fa90e1 commit 21f916a
Show file tree
Hide file tree
Showing 4 changed files with 127 additions and 2 deletions.
84 changes: 83 additions & 1 deletion poppy/optics.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
'BandLimitedCoron', 'BandLimitedCoronagraph', 'IdealFQPM', 'CircularPhaseMask', 'RectangularFieldStop', 'SquareFieldStop',
'AnnularFieldStop', 'HexagonFieldStop',
'CircularOcculter', 'BarOcculter', 'FQPM_FFT_aligner', 'CircularAperture',
'HexagonAperture', 'MultiHexagonAperture', 'NgonAperture', 'MultiCircularAperture', 'RectangleAperture',
'HexagonAperture', 'MultiHexagonAperture', 'NgonAperture', 'MultiCircularAperture', 'WedgeSegmentedCircularAperture', 'RectangleAperture',
'SquareAperture', 'SecondaryObscuration', 'LetterFAperture', 'AsymmetricSecondaryObscuration',
'ThinLens', 'GaussianAperture', 'KnifeEdge', 'TiltOpticalPathDifference', 'CompoundAnalyticOptic', 'fixed_sampling_optic']

Expand Down Expand Up @@ -1588,6 +1588,88 @@ def _one_aperture(self, wave, index, value=1):
return self.transmission


class WedgeSegmentedCircularAperture(CircularAperture):
@utils.quantity_input(radius=u.meter, gap=u.meter)
def __init__(self, name=None, radius=1.0 * u.meter,
rings=2, nsections=4, gap_radii=None, gap=0.01 * u.meter, **kwargs):
""" Define a circular aperture made of pie-wedge or keystone shaped segments.
Parameters
----------
name : string
Descriptive name
radius : float
Radius of the pupil, in meters.
rings : int
Number of rings of segments
nsections : int or list of ints
Number of segments per ring. If one int, same number of segments in each ring.
Or provide a list of ints to set different numbers per ring.
gap_radii : quantity length
Radii from the center for the gaps between rings
gap : quantity length
Width of gaps between segments, in both radial and azimuthal directions
kwargs : other kwargs are passed to CircularAperture
Potential TODO: also have this inherit from MultiSegmentedAperture and subclass
some of those functions as appropriate. Consider refactoring from gap_radii to instead
provide the widths of each segment. Add option for including the center segment or having
a missing one in the middle for on-axis apertures. Use grayscale approximation for rasterizing
the circular gaps between the rings.
"""

if name is None:
name = "Circle of Wedge Sections, radius={}".format(radius)
super().__init__(name=name, radius=radius, **kwargs)

self._default_display_size = 2 * self.radius

self.rings = rings
self.nsections = [nsections, ] * rings if np.isscalar(nsections) else nsections
self.gap = gap
self.gap_radii = gap_radii if gap_radii is not None else ((np.arange(
self.rings) + 1) / self.rings) * self.radius

# determine angles per each section gap
self.gap_angles = []
for iring in range(self.rings):
nsec = self.nsections[iring]
self.gap_angles.append(np.arange(nsec) / nsec * 2 * np.pi)

def get_transmission(self, wave):
""" Compute the transmission inside/outside of the occulter.
"""
self.transmission = super().get_transmission(wave)

y, x = self.get_coordinates(wave)
r = np.sqrt(x ** 2 + y ** 2)

halfgapwidth = self.gap.to_value(u.m) / 2
for iring in range(self.rings):

# Draw the radial gaps around the azimuth in the Nth ring
r_ring_inner = 0 if iring == 0 else self.gap_radii[iring - 1].to_value(u.m)
r_ring_outer = self.radius.to_value(u.m) if iring == self.rings - 1 else self.gap_radii[iring].to_value( u.m)
# print(f"{iring}: gap from inner: {r_ring_inner} to outer: {r_ring_outer}")

# Draw the azimuthal gap after the ring
if iring > 0:
# print(f"drawing ring gap {iring} at {r_ring_inner}")
self.transmission[np.abs(r - r_ring_inner) < halfgapwidth] = 0

for igap in range(self.nsections[iring]):
angle = self.gap_angles[iring][igap]
# print(f" linear gap {igap} at {angle} radians")
# calculate rotated x' and y' coordinates after rotation by that angle.
x_p = np.cos(angle) * x + np.sin(angle) * y
y_p = -np.sin(angle) * x + np.cos(angle) * y

self.transmission[(0 < x_p) & (r_ring_inner < r) & (r < r_ring_outer) &
(np.abs(y_p) < halfgapwidth)] = 0

return self.transmission


class RectangleAperture(AnalyticOpticalElement):
""" Defines an ideal rectangular pupil aperture
Expand Down
19 changes: 19 additions & 0 deletions poppy/tests/test_optics.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

from .. import poppy_core
from .. import optics
from .. import utils

from .. import accel_math
import numpy as np
Expand Down Expand Up @@ -390,6 +391,24 @@ def test_NgonAperture(display=False):
optic.display()


def test_WedgeSegmentedCircularAperture(plot=False):
""" test WedgeSegmentedCircularAperture """

ap_circ = optics.CircularAperture()
ap_wedge = optics.WedgeSegmentedCircularAperture(rings=3, nsections=[0, 6, 8])
wave1 = poppy_core.Wavefront(npix=256, diam=2, wavelength=1e-6) # 10x10 meter square
wave2 = poppy_core.Wavefront(npix=256, diam=2, wavelength=1e-6) # 10x10 meter square

wave1 *= ap_circ
wave2 *= ap_wedge

assert wave1.total_intensity * 0.95 < wave2.total_intensity < wave1.total_intensity, 'wedge segmented circle should have slightly less clear area than monolith circle'

if plot:
fig, axes = plt.subplots(figsize=(16, 9), ncols=2)
wave1.display(ax=axes[0])
wave2.display(ax=axes[1])


def test_ObscuredCircularAperture_Airy(display=False):
""" Compare analytic 2d Airy function with the results of a POPPY
Expand Down
4 changes: 4 additions & 0 deletions poppy/tests/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,10 @@ def test_radial_profile(plot=False):
assert prof_stds.shape == prof.shape, "Radial profile and stddev array output sizes should match"
assert prof_mads.shape == prof.shape, "Radial profile and median absolute deviation array output sizes should match"

# Test computing some arbitrary function
rad4, prof_max = poppy.radial_profile(psf, custom_function=np.max)
# compare, but ignore the 0th bin and last bin that have no pixels within that bin etc
assert np.all(prof_max[1:-1] >= prof[1:-1]), "Radial profile using max function should be >= profile using mean"

def test_radial_profile_of_offset_source():
"""Test that we can compute the radial profile for a source slightly outside the FOV,
Expand Down
22 changes: 21 additions & 1 deletion poppy/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -540,7 +540,8 @@ def display_profiles(hdulist_or_filename=None, ext=0, overplot=False, title=None


def radial_profile(hdulist_or_filename=None, ext=0, ee=False, center=None, stddev=False, mad=False,
binsize=None, maxradius=None, normalize='None', pa_range=None, slice=0):
binsize=None, maxradius=None, normalize='None', pa_range=None, slice=0,
custom_function=None):
""" Compute a radial profile of the image.
This computes a discrete radial profile evaluated on the provided binsize. For a version
Expand Down Expand Up @@ -579,6 +580,10 @@ def radial_profile(hdulist_or_filename=None, ext=0, ee=False, center=None, stdde
slice: integer, optional
Slice into a datacube, for use on cubes computed by calc_datacube. Default 0 if a
cube is provided with no slice specified.
custom_function : function
To evaluate an arbitrary function in each radial bin, provide some callable function that
takes a list of pixels and returns one float. For instance custome_function=np.min to compute
the minimum in each radial bin.
Returns
--------
Expand Down Expand Up @@ -696,6 +701,21 @@ def radial_profile(hdulist_or_filename=None, ext=0, ee=False, center=None, stdde
wg = np.where((r_pix >= (radius - binsize / 2)) & (r_pix < (radius + binsize / 2)))
mads[i] = np.nanmedian(np.absolute(image[wg]-np.nanmedian(image[wg])))
return rr, mads
elif custom_function is not None:
# Compute some custom function in each radial bin
results = np.zeros_like(radialprofile2)
r_pix = r * binsize
for i, radius in enumerate(rr):
if i == 0:
wg = np.where(r < radius + binsize / 2)
else:
wg = np.where((r_pix >= (radius - binsize / 2)) & (r_pix < (radius + binsize / 2)))
if len(wg[0])==0: # Zero elements in this bin
results[i] = np.nan
else:
results[i] = custom_function(image[wg])
return rr, results


elif not ee:
# (Default behavior) Compute average in each radial bin
Expand Down

0 comments on commit 21f916a

Please sign in to comment.